Numerical modeling of 1-D transient poroelastic waves
暂无分享,去创建一个
[1] Nanxun Dai,et al. Wave propagation in heterogeneous, porous media: A velocity‐stress, finite‐difference method , 1995 .
[2] Olivier Coussy,et al. Acoustics of Porous Media , 1988 .
[3] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[4] B. Gustafsson. The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .
[5] Michael Dumbser,et al. Fast high order ADER schemes for linear hyperbolic equations , 2004 .
[6] Claus-Dieter Munz,et al. Lax–Wendroff-type schemes of arbitrary order in several space dimensions , 2006 .
[7] Joël Piraux,et al. A new interface method for hyperbolic problems with discontinuous coefficients: one-dimensional acoustic example , 2001 .
[8] José M. Carcione,et al. Note: Numerical Solution of the Poroviscoelastic Wave Equation on a Staggered Mesh , 1999 .
[9] Qing Huo Liu,et al. The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media , 2001 .
[10] Boris Gurevich,et al. Interface conditions for Biot’s equations of poroelasticity , 1999 .
[11] R. LeVeque,et al. Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .
[12] Marsha Berger,et al. Stability of interfaces with mesh refinement , 1985 .
[13] M. Biot. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .
[14] Boris Gurevich,et al. Wave Propagation in heterogeneous, porous media: A velocity-stress, finite difference method; discussion and reply , 1996 .
[15] Abdelaâziz Ezziani,et al. Modélisation mathématique et numérique de la propagation d'ondes dans les milieux viscoélastiques et poroélastiques , 2005 .
[16] Martin Schanz. Time domain boundary element formulation , 2001 .
[17] Jian-Fei Lu,et al. Wave field simulation for heterogeneous porous media with singular memory drag force , 2005 .
[18] Patrick Joly,et al. An Error Analysis of Conservative Space-Time Mesh Refinement Methods for the One-Dimensional Wave Equation , 2005, SIAM J. Numer. Anal..
[19] S. Kelly,et al. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid , 1956 .
[20] H. Kreiss,et al. Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II , 1972 .
[21] Chenggang Zhao,et al. An explicit finite element method for Biot dynamic formulation in fluid-saturated porous media and its application to a rigid foundation , 2005 .
[22] L. Trefethen. Instability of difference models for hyperbolic initial boundary value problems , 1984 .
[23] D. L. Johnson,et al. The equivalence of quasistatic flow in fluid‐saturated porous media and Biot’s slow wave in the limit of zero frequency , 1981 .
[24] B Lenoach. 1D waves in a random poroelastic medium with large fluctuations , 1999 .
[25] José M. Carcione,et al. SOME ASPECTS OF THE PHYSICS AND NUMERICAL MODELING OF BIOT COMPRESSIONAL WAVES , 1995 .