On DNA Codes using the Ring Z4 + wZ4
暂无分享,去创建一个
[1] Tadao Kasami,et al. New generalizations of the Reed-Muller codes-I: Primitive codes , 1968, IEEE Trans. Inf. Theory.
[2] Ali Ghrayeb,et al. Cyclic DNA codes over the ring F2[u]/(u2-1) based on the deletion distance , 2009, J. Frankl. Inst..
[3] Oliver D. King,et al. Bounds for DNA Codes with Constant GC-Content , 2003, Electron. J. Comb..
[4] Irfan Siap,et al. Reversible DNA codes over F16+uF16+vF16+uvF16 , 2017, Adv. Math. Commun..
[5] David E. Muller,et al. Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..
[6] Steven T. Dougherty,et al. Codes over rings, complex lattices and Hermitian modular forms , 2005, Eur. J. Comb..
[7] Bahattin Yildiz,et al. A novel approach for constructing reversible codes and applications to DNA codes over the ring F2[u]/(u2k-1) , 2017, Finite Fields Their Appl..
[8] Liqi Wang,et al. On cyclic DNA codes over $${\mathbb {F}}_2+u{\mathbb {F}}_2$$F2+uF2 , 2016 .
[9] Manish K. Gupta,et al. On optimal family of codes for archival DNA storage , 2015, 2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA).
[10] Jian Ma,et al. DNA-Based Storage: Trends and Methods , 2015, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.
[11] Xiaojing Chen,et al. Cyclic DNA codes over F2+uF2+vF2+uvF2 , 2015, ArXiv.
[12] Navin Kashyap,et al. DNA codes that avoid secondary structures , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[13] Oliver D. King,et al. Linear constructions for DNA codes , 2005, Theor. Comput. Sci..
[14] T. Aaron Gulliver,et al. On cyclic DNA codes , 2012, 2013 IEEE International Symposium on Information Theory.
[15] Manish K. Gupta,et al. The Art of DNA Strings: Sixteen Years of DNA Coding Theory , 2016, ArXiv.
[16] Yasemin Cengellenmis,et al. On cyclic DNA codes over the rings Z_{4}+wZ_{4} and Z_{4}+wZ_{4}+vZ_{4}+wvZ_{4} , 2016, ArXiv.
[17] Bin Wang,et al. DNA Code Design Based on the Bloch Quantum Chaos Algorithm , 2017, IEEE Access.
[18] Suat Karadeniz,et al. Linear Codes over Z_4+uZ_4: MacWilliams identities, projections, and formally self-dual codes , 2014, Finite Fields Their Appl..
[19] N. J. A. Sloane,et al. The Nordstrom-Robinson Code is the Binary Image of 19 the Octacode , 1992, Coding And Quantization.
[20] S. Sriboonchitta,et al. Cyclic DNA codes over the ring $$\mathbb {F}_2+u\mathbb {F}_2+v\mathbb {F}_2+uv\mathbb {F}_2+v^2\mathbb {F}_2+uv^2\mathbb {F}_2$$F2+uF2+vF2+uvF2+v2F2+uv2F2 , 2018 .
[21] Manish K. Gupta,et al. On Z4-Simplex Codes and Their Gray Images , 1999, AAECC.
[22] Manish K. Gupta,et al. Natural Data Storage: A Review on sending Information from now to then via Nature , 2015, ArXiv.
[23] Manish K. Gupta,et al. ON SOME LINEAR CODES OVER Z2S , 1999 .
[24] I. Siap,et al. Similarity Cyclic DNA Codes over Rings , 2008, 2008 2nd International Conference on Bioinformatics and Biomedical Engineering.
[25] R. Fisher. A SYSTEM OF CONFOUNDING FOR FACTORS WITH MORE THAN TWO ALTERNATIVES, GIVING COMPLETELY ORTHOGONAL CUBES AND HIGHER POWERS , 1943 .
[26] L M Adleman,et al. Molecular computation of solutions to combinatorial problems. , 1994, Science.
[27] K. Guenda,et al. Construction of cyclic codes over $$\mathbb F _2+u\mathbb F _2$$F2+uF2 for DNA computing , 2013, Applicable Algebra in Engineering, Communication and Computing.
[28] Amit Marathe,et al. On combinatorial DNA word design , 1999, DNA Based Computers.
[29] Anthony J. Macula,et al. DNA sequences and quaternary cyclic codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[30] Mohammed M. Al-Ashker. SIMPLEX CODES OVER THE RING F 2 + uF 2 , 2005 .
[31] Yeow Meng Chee,et al. Improved Lower Bounds for Constant GC-Content DNA Codes , 2008, IEEE Transactions on Information Theory.
[32] Abhay Kumar Singh,et al. On cyclic DNA codes over the Ring $\Z_4 + u \Z_4$ , 2015, ArXiv.
[33] Hojjat Mostafanasab,et al. On cyclic DNA codes over $\mathbb{F}_2+u\mathbb{F}_2+u^2\mathbb{F}_2$ , 2016, ArXiv.