Physical reality of the Preisach model for organic ferroelectrics

The Preisach model has been a cornerstone in the fields of ferromagnetism and ferroelectricity since its inception. It describes a real, non-ideal, ferroic material as the sum of a distribution of ideal ‘hysterons’. However, the physical reality of the model in ferroelectrics has been hard to establish. Here, we experimentally determine the Preisach (hysteron) distribution for two ferroelectric systems and show how its broadening directly relates to the materials’ morphology. We connect the Preisach distribution to measured microscopic switching kinetics that underlay the macroscopic dispersive switching kinetics as commonly observed for practical ferroelectrics. The presented results reveal that the in principle mathematical construct of the Preisach model has a strong physical basis and is a powerful tool to explain polarization switching at all time scales in different types of ferroelectrics. These insights lead to guidelines for further advancement of the ferroelectric materials both for conventional and multi-bit data storage applications.Though the Preisach model successfully describes hysteretic switching in ferroelectrics, the physical reality of the model remains elusive. Here, the authors explained the origin of the experimental Preisach distribution and its effect on switching kinetics and materials’ potential applications

[1]  H. von Seggern,et al.  Polarization switching dynamics by inhomogeneous field mechanism in ferroelectric polymers , 2011, 2011 - 14th International Symposium on Electrets.

[2]  M. Vázquez,et al.  Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays , 2013 .

[3]  R. Paton,et al.  Corrigendum: Catalytic enantioselective synthesis of indanes by a cation-directed 5-endo-trig cyclization. , 2015, Nature chemistry.

[4]  Dwight D. Viehland,et al.  Random-field model for ferroelectric domain dynamics and polarization reversal , 2000 .

[5]  R. Sijbesma,et al.  Polar switching in trialkylbenzene-1,3,5-tricarboxamides. , 2012, The journal of physical chemistry. B.

[6]  W. J. Merz,et al.  Domain Formation and Domain Wall Motions in Ferroelectric BaTiO 3 Single Crystals , 1954 .

[7]  A model of ferroelectric behavior based on a complete switching density , 2004 .

[8]  G. Gelinck,et al.  Multi-bit organic ferroelectric memory , 2013 .

[9]  T. Shikata,et al.  Segment sizes of supramolecular polymers of N,N',N"-tris(3,7-dimethyloctyl)benzene-1,3,5-tricarboxamide in n-decane. , 2008, The journal of physical chemistry. B.

[10]  A. McGaughey,et al.  Energy barriers for dipole moment flipping in PVDF-related ferroelectric polymers. , 2016, The Journal of chemical physics.

[11]  Amit Kumar,et al.  First-order reversal curve probing of spatially resolved polarization switching dynamics in ferroelectric nanocapacitors. , 2012, ACS nano.

[12]  Xiao Li Zhu,et al.  Ferroelectric properties and polarization dynamics in Ba4Sm2Ti4Ta6O30 tungsten bronze ceramics , 2016 .

[13]  R. Waser,et al.  Relaxation mechanism of ferroelectric switching in Pb(Zr,Ti)O3 thin films , 2001 .

[14]  Eric Laboure,et al.  Characterization and model of ferroelectrics based on experimental Preisach density , 2002 .

[15]  Simulation of the poling of P(VDF-TrFE) with ferroelectric electrodes based on the Preisach model , 2001 .

[16]  E. Fatuzzo Theoretical Considerations on the Switching Transient in Ferroelectrics , 1962 .

[17]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[18]  Dirk Wouters,et al.  Preisach model for the simulation of ferroelectric capacitors , 2001 .

[19]  R. Sijbesma,et al.  True ferroelectric switching in thin films of trialkylbenzene-1,3,5-tricarboxamide (BTA). , 2016, Physical chemistry chemical physics : PCCP.

[20]  Tae Won Noh,et al.  Multilevel Data Storage Memory Using Deterministic Polarization Control , 2012, Advanced materials.

[21]  F. G. Shin,et al.  Simulation of nonlinear dielectric properties of polyvinylidene fluoride based on the Preisach model , 2003 .

[22]  M. Vopsaroiu,et al.  Polarization dynamics and non-equilibrium switching processes in ferroelectrics , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[23]  Sergei V. Kalinin,et al.  Universality of Polarization Switching Dynamics in Ferroelectric Capacitors Revealed by 5D Piezoresponse Force Microscopy , 2013 .

[24]  Y. Zhou,et al.  A model for the polarization hysteresis loops of the perovskite-type ferroelectric thin films , 2007 .

[25]  H. Kungl,et al.  Statistical electric field and switching time distributions in PZT 1Nb2Sr ceramics: Crystal- and microstructure effects , 2014 .

[26]  S. Ducharme,et al.  Why ferroelectric polyvinylidene fluoride is special , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[27]  Yoshihiro Ishibashi,et al.  Note on Ferroelectric Domain Switching , 1971 .

[28]  Stephen Jesse,et al.  Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films , 2010 .

[29]  Mengyuan Li,et al.  The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). , 2016, Nature materials.

[30]  T. Furukawa,et al.  Factors governing ferroelectric switching characteristics of thin VDF/TrFE copolymer films , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[31]  T. Granzow,et al.  Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism , 2010 .

[32]  Ilias Katsouras,et al.  Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage , 2016 .

[33]  Yudin,et al.  Intrinsic ferroelectric coercive field , 2000, Physical review letters.

[34]  Stephen Jesse,et al.  Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezorespon , 2010 .

[35]  Peng-Fei Li,et al.  Multiaxial Molecular Ferroelectric Thin Films Bring Light to Practical Applications. , 2018, Journal of the American Chemical Society.

[36]  P. Weaver,et al.  Thermally activated switching kinetics in second-order phase transition ferroelectrics , 2010 .

[37]  Y. Tokura,et al.  Above-room-temperature ferroelectricity in a single-component molecular crystal , 2010, Nature.

[38]  T. Aida,et al.  Supramolecular ferroelectrics. , 2015, Nature chemistry.

[39]  Jeanette G. Grasselli,et al.  The Analytical approach , 1983 .

[40]  A. Stancu,et al.  Analysis of switching properties of porous ferroelectric ceramics by means of first-order reversal curve diagrams , 2006 .

[41]  F. G. Shin,et al.  Modeling saturated and unsaturated ferroelectric hysteresis loops: An analytical approach , 2005 .

[42]  J. Legrand Structure and ferroelectric properties of P(VDF-TrFE) copolymers , 1989 .

[43]  T. Kawae,et al.  Temperature dependence of ferroelectric properties and the activation energy of polarization reversal in (Pr,Mn)‐codoped BiFeO3 thin films , 2015 .

[44]  H. Orihara,et al.  A Theory of D-E Hysteresis Loop Based on the Avrami Model , 1994 .

[45]  R. Sijbesma,et al.  Tuning the Ferroelectric Properties of Trialkylbenzene‐1,3,5‐tricarboxamide (BTA) , 2017 .

[46]  G. Giovannetti,et al.  Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal , 2013, Science.

[47]  Sergei V. Kalinin,et al.  Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. , 2008, Nature Materials.

[48]  I-Wei Chen,et al.  Frequency Spectra of Fatigue of PZT and other Ferroelectric Thin Films , 1997 .

[49]  L. You,et al.  Universal Ferroelectric Switching Dynamics of Vinylidene Fluoride-trifluoroethylene Copolymer Films , 2014, Scientific Reports.

[50]  T. Noh,et al.  Domain switching kinetics in disordered ferroelectric thin films. , 2007, Physical review letters.

[51]  Michael J. Hoffmann,et al.  Universal Polarization Switching Behavior of Disordered Ferroelectrics , 2012 .

[52]  A. Tagantsev,et al.  Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films , 2002 .

[53]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[54]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[55]  Yoshinori Tokura,et al.  Organic ferroelectrics. , 2008, Nature materials.

[56]  Feng Liu,et al.  Modeling ferroelectric capacitors based on the dipole switching theory , 2007 .

[57]  R. Sijbesma,et al.  Polarization loss in the organic ferroelectric trialkylbenzene-1,3,5-tricarboxamide (BTA). , 2017, Physical chemistry chemical physics : PCCP.

[58]  Y. Tokura,et al.  Above-room-temperature ferroelectricity in a single-component molecular crystal. , 2010, Nature.

[59]  E. Williams,et al.  Domain nucleation and relaxation kinetics in ferroelectric thin films , 2000 .