An Image Registration Model in Electron Backscatter Diffraction

Variational methods were successfully applied for registration of gray and RGB-valued image sequences. A common assumption in these models is that pixel-values do not change under transformations. Nowadays, modern image acquisition techniques such as electron backscatter tomography (EBSD), which is used in material sciences, can capture images with values in nonlinear spaces. Here, the image values belong to the quotient space SO(3)/S of the special orthogonal group modulo the discrete symmetry group of the crystal. For such data, the assumption that pixel-values remain unchanged under transformations appears to be no longer valid. Hence, we propose a variational model for the registration of SO(3)/S-valued image sequences, taking the dependence of pixel-values on the transformation into account. More precisely, the data is transformed according to the rotation part in the polar decomposition of the Jacobian of the transformation. To model non-smooth transformations without obtaining so-called staircasing effects, we propose to use a total generalized variation like prior. Then, we prove existence of a minimizer for our model and explain how it can be discretized and minimized by a primal-dual algorithm. Numerical examples illustrate the performance of our method.

[1]  Karl Kunisch,et al.  On Infimal Convolution of TV-Type Functionals and Applications to Video and Image Reconstruction , 2014, SIAM J. Imaging Sci..

[2]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[3]  Otmar Scherzer,et al.  Variational Methods in Imaging , 2008, Applied mathematical sciences.

[4]  M. Nelhiebel,et al.  Applying a Statistical Model to the Observed Texture Evolution of Fatigued Metal Films , 2020, IEEE Transactions on Device and Materials Reliability.

[5]  M. Hestenes Multiplier and gradient methods , 1969 .

[6]  Kristian Bredies,et al.  Total Generalized Variation in Diffusion Tensor Imaging , 2013, SIAM J. Imaging Sci..

[7]  S. K. Jha,et al.  Tensile properties and microstructural evolution of Zircaloy-4 processed through rolling at different temperatures , 2016 .

[8]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[9]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[10]  R. Müller,et al.  Investigation of austenitic TRIP steels by means of a phase field model , 2018, PAMM.

[11]  James B. Robertson,et al.  The decomposition of matrix-valued measures. , 1968 .

[12]  Jan Henrik Fitschen,et al.  Measurement of strain, strain rate and crack evolution in shear cutting , 2021 .

[13]  G. Maso,et al.  Further remarks on the lower semicontinuity of polyconvex integrals , 1994 .

[14]  S. Sitzman,et al.  Backscattering Detector and EBSD in Nanomaterials Characterization , 2006 .

[15]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[16]  Michael Hintermüller,et al.  Limiting Aspects of Nonconvex TVφ Models , 2014, SIAM J. Imaging Sci..

[17]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[18]  Michael J. Black,et al.  A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them , 2013, International Journal of Computer Vision.

[19]  R. Lebensohn,et al.  Dynamic recrystallisation of ice aggregates during co-axial viscoplastic deformation: a numerical approach , 2016, Journal of Glaciology.

[20]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[21]  Gabriele Steidl,et al.  Morphing of Manifold-Valued Images Inspired by Discrete Geodesics in Image Spaces , 2017, SIAM J. Imaging Sci..

[22]  Shu-hui Li,et al.  Prediction of martensitic transformation and deformation behavior in the TRIP steel sheet forming , 2008 .

[23]  Michael I. Miller,et al.  Diffeomorphic Matching of Diffusion Tensor Images , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[24]  R. Hielscher,et al.  Orientations – perfectly colored , 2016 .

[25]  P. Withers,et al.  High resolution low kV EBSD of heavily deformed and nanocrystalline Aluminium by dictionary-based indexing , 2018, Scientific Reports.

[26]  Irene Fonseca,et al.  Quasi-convex integrands and lower semicontinuity in L 1 , 1992 .

[27]  T. Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik a Survey on Variational Optic Flow Methods for Small Displacements a Survey on Variational Optic Flow Methods for Small Displacements , 2022 .

[28]  Benjamin Berkels,et al.  Time Discrete Geodesic Paths in the Space of Images , 2015, SIAM J. Imaging Sci..

[29]  H. Gottschalk,et al.  Effect of local anisotropy on fatigue crack initiation in a coarse grained nickel-base superalloy , 2018, 1806.02106.

[30]  Daniel Cremers,et al.  An Unbiased Second-Order Prior for High-Accuracy Motion Estimation , 2008, DAGM-Symposium.

[31]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[32]  James C. Gee,et al.  Spatial transformations of diffusion tensor magnetic resonance images , 2001, IEEE Transactions on Medical Imaging.

[33]  Roland Glowinski,et al.  On Alternating Direction Methods of Multipliers: A Historical Perspective , 2014, Modeling, Simulation and Optimization for Science and Technology.

[34]  Joachim Weickert,et al.  Lagrangian Strain Tensor Computation with Higher Order Variational Models , 2013, BMVC.

[35]  M. Rumpf,et al.  Variational time discretization of geodesic calculus , 2012, 1210.2097.

[36]  David P. Luebke,et al.  CUDA: Scalable parallel programming for high-performance scientific computing , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[37]  K. Kunze,et al.  Orientation imaging: The emergence of a new microscopy , 1993 .

[38]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[39]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[40]  Raynald Gauvin,et al.  Imaging with a Commercial Electron Backscatter Diffraction (EBSD) Camera in a Scanning Electron Microscope: A Review , 2018, J. Imaging.

[41]  José Mario Martínez,et al.  Global minimization using an Augmented Lagrangian method with variable lower-level constraints , 2010, Math. Program..

[42]  M. Walter,et al.  Microstructure and mechanical properties of Zircaloy-4 cladding hydrogenated at temperatures typical for loss-of-coolant accident (LOCA) conditions , 2015 .

[43]  Jan Modersitzki,et al.  FAIR: Flexible Algorithms for Image Registration , 2009 .

[44]  A. Rollett,et al.  Spectral methods for full-field micromechanical modelling of polycrystalline materials , 2020 .

[45]  Alain Trouvé,et al.  Metamorphoses Through Lie Group Action , 2005, Found. Comput. Math..

[46]  Martin Rumpf,et al.  Convergence of the Time Discrete Metamorphosis Model on Hadamard Manifolds , 2019, SIAM J. Imaging Sci..

[47]  G. Philippis Weak notions of Jacobian determinant and relaxation , 2012 .

[48]  Gabriele Steidl,et al.  Iterative Multiplicative Filters for Data Labeling , 2016, International Journal of Computer Vision.

[49]  Brent L. Adams,et al.  ADVANCES IN AUTOMATIC EBSP SINGLE ORIENTATION MEASUREMENTS , 1993 .

[50]  K. Bredies,et al.  Regularization of linear inverse problems with total generalized variation , 2014 .

[51]  Olivier Clatz,et al.  DT-REFinD: Diffusion Tensor Registration With Exact Finite-Strain Differential , 2009, IEEE Transactions on Medical Imaging.

[52]  Angus J. Wilkinson,et al.  Strains, planes, and EBSD in materials science , 2012 .

[53]  Gabriele Steidl,et al.  Strain analysis by a total generalized variation regularized optical flow model , 2017, Inverse Problems in Science and Engineering.

[54]  G. Steidl,et al.  Variational Methods with Higher–Order Derivatives in Image Processing , 2007 .

[55]  Nicolas Pinto,et al.  PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation , 2009, Parallel Comput..

[56]  E. Acerbi,et al.  New lower semicontinuity results for polyconvex integrals , 1994 .

[57]  Jing Yuan,et al.  Simultaneous Higher-Order Optical Flow Estimation and Decomposition , 2007, SIAM J. Sci. Comput..

[58]  I. Fonseca,et al.  Relaxation of multiple integrals in subcritical Sobolev spaces , 1997 .

[59]  L. Ambrosio,et al.  On the relaxation in BV(Ω; Rm) of quasi-convex integrals , 1992 .

[60]  Justin A. Blaber,et al.  Ncorr: Open-Source 2D Digital Image Correlation Matlab Software , 2015, Experimental Mechanics.

[61]  F. Rindler,et al.  Relaxation of signed integral functionals in BV , 2009 .

[62]  Bernd Neumann,et al.  Optical flow , 1986, Workshop on Motion.

[63]  S. Setzer,et al.  Infimal convolution regularizations with discrete ℓ1-type functionals , 2011 .

[64]  Helmut Schaeben,et al.  Grain detection from 2d and 3d EBSD data--specification of the MTEX algorithm. , 2011, Ultramicroscopy.

[65]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[66]  José Mario Martínez,et al.  On Augmented Lagrangian Methods with General Lower-Level Constraints , 2007, SIAM J. Optim..

[67]  Gabriele Steidl,et al.  First order algorithms in variational image processing , 2014, ArXiv.

[68]  Thomas Pock,et al.  Non-local Total Generalized Variation for Optical Flow Estimation , 2014, ECCV.

[69]  Jing Yuan,et al.  Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation , 2005, Journal of Mathematical Imaging and Vision.