Saliency-based relief generation

Abstract Relief is a special art form that differs from painting and other round sculpture, and is traditionally created by laborious hand carving. Existing methods for digital relief generation focus on direct geometric compression, which transforms a three-dimensional (3D) mesh into a detail-preserving surface with a shallow depth, indicating the presence of 3D figures. We propose to add saliency information into digital relief generation. Novel saliency extraction methods are introduced to preserve relief features, and then a non-linear boosting of details is adopted to generate the final relief models. This work seamlessly combines visual perception and geometrical processing.

[1]  Tolga K. Çapin,et al.  Saliency for animated meshes with material properties , 2010, APGV '10.

[2]  Thouis Raymond Jones,et al.  Feature preserving smoothing of 3D surface scans , 2003 .

[3]  Michael F. Cohen,et al.  Digital photography with flash and no-flash image pairs , 2004, ACM Trans. Graph..

[4]  Daisuke Kihara,et al.  Salient critical points for meshes , 2007, Symposium on Solid and Physical Modeling.

[5]  Ralph R. Martin,et al.  Bas-relief Generation Using Adaptive Histogram Equalisation , 2022 .

[6]  David J. Kriegman,et al.  The Bas-Relief Ambiguity , 2004, International Journal of Computer Vision.

[7]  Umberto Castellani,et al.  Sparse points matching by combining 3D mesh saliency with statistical descriptors , 2008, Comput. Graph. Forum.

[8]  Adam Finkelstein,et al.  Digital bas-relief from 3D scenes , 2007, ACM Trans. Graph..

[9]  David W. Jacobs,et al.  Mesh saliency , 2005, ACM Trans. Graph..

[10]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[11]  Junjun Pan,et al.  Image-based bas-relief generation with gradient operation , 2010 .

[12]  Hans-Peter Seidel,et al.  Real-time Generation of Digital Bas-Reliefs , 2010 .

[13]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[14]  Hans-Peter Seidel,et al.  Mesh scissoring with minima rule and part salience , 2005, Comput. Aided Geom. Des..

[15]  Frédo Durand,et al.  A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach , 2006, International Journal of Computer Vision.

[16]  Danny Barash,et al.  A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Alexei A. Efros,et al.  Fast bilateral filtering for the display of high-dynamic-range images , 2002 .

[18]  Sudipta Mukhopadhyay,et al.  Removal of Fog from Images: A Review , 2012 .

[19]  F. Durand,et al.  Flash photography enhancement via intrinsic relighting , 2004, ACM Trans. Graph..

[20]  Inkyu Moon,et al.  Extraction of Visual Landmarks Using Improved Feature Matching Technique for Stereo Vision Applications , 2012 .

[21]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[22]  Frédo Durand,et al.  Flash photography enhancement via intrinsic relighting , 2004, SIGGRAPH 2004.