Ti3+ self-doped TiO2 photoelectrodes for photoelectrochemical water splitting and photoelectrocatalytic pollutant degradation

[1]  W. Cao,et al.  An insight into the role of oxygen vacancy in hydrogenated TiO₂ nanocrystals in the performance of dye-sensitized solar cells. , 2015, ACS applied materials & interfaces.

[2]  A. Takshi,et al.  Toward a Visible Light-Driven Photocatalyst: The Effect of Midgap-States-Induced Energy Gap of Undoped TiO2 Nanoparticles , 2015 .

[3]  M. Xing,et al.  A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment , 2014 .

[4]  Panpan Sun,et al.  Synthesis, Characterization of Ce-doped TiO2 Nanotubes with High Visible Light Photocatalytic Activity , 2014, Catalysis Letters.

[5]  W. Li,et al.  Facile synthesis of hierarchical porous TiO(2) ceramics with enhanced photocatalytic performance for micropolluted pesticide degradation. , 2014, ACS applied materials & interfaces.

[6]  K. Leung,et al.  Green synthesis of anatase TiO(2) nanocrystals with diverse shapes and their exposed facets-dependent photoredox activity. , 2014, ACS applied materials & interfaces.

[7]  M. Xing,et al.  Synthesis, Characterization and Photo-Activity of Vacuum Activated V4+ and Ti3+ Doped TiO2 , 2014, Catalysis Letters.

[8]  H. Fu,et al.  Ordered mesoporous black TiO(2) as highly efficient hydrogen evolution photocatalyst. , 2014, Journal of the American Chemical Society.

[9]  Weidong Zhu,et al.  Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process , 2014 .

[10]  M. Gao,et al.  Photoelectrocatalytic degradation of 4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes , 2014 .

[11]  Lauren R. Grabstanowicz,et al.  Ti3+ self-doped TiO2−x anatase nanoparticles via oxidation of TiH2 in H2O2 , 2014 .

[12]  Jie-Sheng Chen,et al.  Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides , 2014 .

[13]  H. Song,et al.  Investigations on photoelectrocatalytic reduction of Cr(VI) over titanium dioxide anode and metal cathode , 2014 .

[14]  Fan Zuo,et al.  Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity , 2014 .

[15]  Le Shi,et al.  Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting. , 2014, ACS applied materials & interfaces.

[16]  W. Zhou,et al.  Surface tuning for oxide-based nanomaterials as efficient photocatalysts. , 2013, Chemical Society reviews.

[17]  M. Fujii,et al.  Evidence for Ti Interstitial Induced Extended Visible Absorption and Near Infrared Photoluminescence from Undoped TiO2 Nanoribbons: An In Situ Photoluminescence Study , 2013 .

[18]  Guohua Zhao,et al.  Hierarchical (0 0 1) facet anatase/rutile TiO2 heterojunction photoanode with enhanced photoelectrocatalytic performance , 2013 .

[19]  Fan Zuo,et al.  Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. , 2013, Chemistry.

[20]  Ying Dai,et al.  Green synthetic approach for Ti3+ self-doped TiO(2-x) nanoparticles with efficient visible light photocatalytic activity. , 2013, Nanoscale.

[21]  Wei Wang,et al.  A new sight on hydrogenation of F and N-F doped {0 0 1} facets dominated anatase TiO2 for efficient visible light photocatalyst , 2012 .

[22]  Chuncheng Chen,et al.  Anatase TiO2 mesocrystals enclosed by (001) and (101) facets: synergistic effects between Ti3+ and facets for their photocatalytic performance. , 2012, Chemistry.

[23]  R. Daghrir,et al.  Photoelectrocatalytic technologies for environmental applications , 2012 .

[24]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[25]  M. Fernández-García,et al.  Advanced nanoarchitectures for solar photocatalytic applications. , 2012, Chemical reviews.

[26]  Dong Ha Kim,et al.  Surface-Plasmon-Induced Visible Light Photocatalytic Activity of TiO2 Nanospheres Decorated by Au Nanoparticles with Controlled Configuration , 2012 .

[27]  Zhiyu Wang,et al.  Shape Evolution of Highly Crystalline Anatase TiO2 Nanobipyramids , 2011 .

[28]  Xiujian Zhao,et al.  Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. , 2011, Journal of the American Chemical Society.

[29]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[30]  H. Fu,et al.  Well‐Ordered Large‐Pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance , 2011 .

[31]  M. Xing,et al.  An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. , 2011, Chemical communications.

[32]  M. Jaroniec,et al.  Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites , 2011 .

[33]  Jiaguo Yu,et al.  Anatase TiO(2) nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. , 2010, Nanoscale.

[34]  Tao Wu,et al.  Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. , 2010, Journal of the American Chemical Society.

[35]  T. Xu,et al.  Visible-light-driven photocatalytic S- and C- codoped meso/nanoporous TiO2 , 2010 .

[36]  Michael K. Seery,et al.  Highly Visible Light Active TiO2-xNx Heterojunction Photocatalysts , 2010 .

[37]  Zhigang Chen,et al.  Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis , 2009 .

[38]  L. Palmisano,et al.  Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO2 thin films. , 2006, Chemical communications.

[39]  T. Amemiya,et al.  Relation between photocatalytic activity and preparation conditions for nitrogen-doped visible light-driven TiO2 photocatalysts , 2006 .

[40]  S. Yamanaka,et al.  Photoelectrochemical study of lanthanide titanium oxides, Ln2Ti2O7 (Ln = La, Sm, and Gd) , 2005 .

[41]  Craig A. Grimes,et al.  Photoelectrochemical properties of titania nanotubes , 2004 .

[42]  Steven H. Szczepankiewicz,et al.  Slow Surface Charge Trapping Kinetics on Irradiated TiO2 , 2002 .

[43]  Harland G. Tompkins,et al.  Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study , 1992 .

[44]  Hui Li,et al.  Microwave-assisted preparation of self-doped TiO2 nanotube arrays for enhanced photoelectrochemical water splitting , 2015 .

[45]  S. Ramakrishna,et al.  Flower-shaped anatase TiO2 mesostructures with excellent photocatalytic properties , 2014 .

[46]  M. Xing,et al.  Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis , 2013 .