Bayesian inference for additive mixed quantile regression models

Quantile regression problems in practice may require flexible semiparametric forms of the predictor for modeling the dependence of responses on covariates. Furthermore, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal data. We present a unified approach for Bayesian quantile inference on continuous response via Markov chain Monte Carlo (MCMC) simulation and approximate inference using integrated nested Laplace approximations (INLA) in additive mixed models. Different types of covariate are all treated within the same general framework by assigning appropriate Gaussian Markov random field (GMRF) priors with different forms and degrees of smoothness. We applied the approach to extensive simulation studies and a Munich rental dataset, showing that the methods are also computationally efficient in problems with many covariates and large datasets.

[1]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[2]  Dawit Zerom,et al.  On Additive Conditional Quantiles With High-Dimensional Covariates , 2003 .

[3]  Pin T. Ng,et al.  Quantile smoothing splines , 1994 .

[4]  Zongwu Cai,et al.  Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models , 2008 .

[5]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.

[6]  Chunfeng Huang,et al.  Smoothing spline estimation in varying‐coefficient models , 2004 .

[7]  A. Kottas,et al.  Bayesian Semiparametric Modelling in Quantile Regression , 2009 .

[8]  Keming Yu,et al.  A Three-Parameter Asymmetric Laplace Distribution and Its Extension , 2005 .

[9]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[10]  C. Ansley,et al.  The Signal Extraction Approach to Nonlinear Regression and Spline Smoothing , 1983 .

[11]  E. Tsionas Bayesian quantile inference , 2003 .

[12]  R. Koenker,et al.  Penalized triograms: total variation regularization for bivariate smoothing , 2004 .

[13]  L. Fahrmeir,et al.  High dimensional structured additive regression models: Bayesian regularization, smoothing and predictive performance , 2011 .

[14]  S. Martino Approximate Bayesian Inference for Latent Gaussian Models , 2007 .

[15]  A. Kottas,et al.  A Bayesian Nonparametric Approach to Inference for Quantile Regression , 2010 .

[16]  Jack A. Taylor,et al.  Approximate Bayesian inference for quantiles , 2005 .

[17]  Andreas Brezger,et al.  Generalized structured additive regression based on Bayesian P-splines , 2006, Comput. Stat. Data Anal..

[18]  Torsten Hothorn,et al.  Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression , 2011 .

[19]  R. Koenker,et al.  Regression Quantiles , 2007 .

[20]  G. Yin,et al.  Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data , 2010, Biometrics.

[21]  P. Green Bayesian reconstructions from emission tomography data using a modified EM algorithm. , 1990, IEEE transactions on medical imaging.

[22]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[23]  Keming Yu,et al.  Bayesian quantile regression , 2001 .

[24]  J. Leslie The Inverse Gaussian Distribution: Theory, Methodology, and Applications , 1990 .

[25]  Alexander J. Smola,et al.  Nonparametric Quantile Estimation , 2006, J. Mach. Learn. Res..

[26]  R. Koenker,et al.  Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .

[27]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[28]  L. Fahrmeir,et al.  Bayesian inference for generalized additive mixed models based on Markov random field priors , 2001 .

[29]  H. Rue,et al.  Approximate Bayesian inference for hierarchical Gaussian Markov random field models , 2007 .

[30]  F. Vega-Redondo Complex Social Networks: Econometric Society Monographs , 2007 .

[31]  H. Bondell,et al.  Flexible Bayesian quantile regression for independent and clustered data. , 2010, Biostatistics.

[32]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[33]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[34]  Yuzhi Cai,et al.  Polynomial power-Pareto quantile function models , 2010 .

[35]  Ji Zhu,et al.  Quantile Regression in Reproducing Kernel Hilbert Spaces , 2007 .

[36]  L. Fahrmeir,et al.  Multivariate statistical modelling based on generalized linear models , 1994 .

[37]  L. Fahrmeir,et al.  PENALIZED STRUCTURED ADDITIVE REGRESSION FOR SPACE-TIME DATA: A BAYESIAN PERSPECTIVE , 2004 .

[38]  R. Koenker Quantile Regression: Fundamentals of Quantile Regression , 2005 .

[39]  Zudi Lu,et al.  Local Linear Additive Quantile Regression , 2004 .

[40]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[41]  Joel L. Horowitz,et al.  Nonparametric Estimation of an Additive Quantile Regression Model , 2004 .