A curve fitting method for extrinsic camera calibration from a single image of a cylindrical object

An important step in the process of optical steel coil quality assurance is to measure the proportions of width and radius of steel coils as well as the relative position and orientation of the camera. This work attempts to estimate these extrinsic parameters from single images by using the cylindrical coil itself as the calibration target. Therefore, an adaptive least-squares algorithm is applied to fit parametrized curves to the detected true coil outline in the acquisition. The employed model allows for strictly separating the intrinsic and the extrinsic parameters. Thus, the intrinsic camera parameters can be calibrated beforehand using available calibration software. Furthermore, a way to segment the true coil outline in the acquired images is motivated. The proposed optimization method yields highly accurate results and can be generalized even to measure other solids which cannot be characterized by the identification of simple geometric primitives.