Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices

Thermal budget limits for low stand-by power ( LSP), 0.25 /spl mu/m foundry CMOS devices have been investigated, in order to assess the impact of post-processing microelectromechanical devices devices. Resistance increases for vias (metal-to-metal contacts) rather than transistor-performance shifts limits the post-processing thermal budget. An empirical relation is found to predict the via resistance increase for various annealing conditions, based on third-order reactions of vacancies supplied by surface diffusion of metal atoms. The resistance increase is strongly dependent on annealing time and temperature. With a criterion of 10% increase, 6 h at 425/spl deg/C, 1 h at 450/spl deg/C, and 0.5 h at 475/spl deg/C are the maximum allowable thermal budgets, respectively. Electromigration (EM) of via chain structures was also evaluated, and after annealing for 6h at 425/spl deg/C showed only a 33% decrease in the EM lifetime.

[1]  Roger T. Howe,et al.  Process Integration for active polysilicon resonant microstructures , 1989 .

[2]  Hisashi Kaneko,et al.  A newly developed model for stress induced slit-like voiding , 1990, 28th Annual Proceedings on Reliability Physics Symposium.

[3]  Timothy D. Sullivan,et al.  Stress‐migration related electromigration damage mechanism in passivated, narrow interconnects , 1991 .

[4]  S. Sherman,et al.  Fabrication technology for an integrated surface-micromachined sensor , 1993 .

[5]  C. Hu,et al.  Electromigration in Al(Cu) two-level structures: Effect of Cu and kinetics of damage formation , 1993 .

[6]  M. W. Putty A Maicromachined vibrating ring gyroscope , 1994 .

[7]  J. Bustillo,et al.  Process technology for the modular integration of CMOS and polysilicon microstructures , 1994 .

[8]  Roger T. Howe,et al.  In Situ Phosphorus-doped Polysilicon For Integrated Mems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[9]  Jeffry J. Sniegowski,et al.  Material and processing issues for the monolithic integration of microelectronics with surface-micromachined polysilicon sensors and actuators , 1995, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[10]  W. Riethmuller,et al.  Novel Process For A Monolithic Integrated Accelerometer , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[11]  M. Schmidt,et al.  A merged MEMS-CMOS process using silicon wafer bonding , 1995, Proceedings of International Electron Devices Meeting.

[12]  T. Sullivan Stress-Induced Voiding in Microelectronic Metallization: Void Growth Models and Refinements , 1996 .

[13]  Paul J. McWhorter,et al.  Characterization of the embedded micromechanical device approach to the monolithic integration of MEMS with CMOS , 1996, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[14]  Noel C. MacDonald,et al.  Integrating SCREAM micromachined devices with integrated circuits , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[15]  J. Bustillo,et al.  Embedded interconnect and electrical isolation for high-aspect-ratio, SOI inertial instruments , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[16]  S. Henck Lubrication of digital micromirrordevicesTM , 1997 .

[17]  S.Y. Hsu,et al.  A fully planarized 6-level-metal CMOS technology for 0.25-0.18 micron foundry manufacturing , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[18]  M. R. Douglass,et al.  A MEMS-based projection display , 1998, Proc. IEEE.

[19]  Robert Rosenberg,et al.  Electromigration path in Cu thin-film lines , 1999 .

[20]  Martin A. Schmidt,et al.  Inertial sensor technology using DRIE and wafer bonding with connecting capability , 1999 .

[21]  R. Howe,et al.  Post-CMOS integration of germanium microstructures , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[22]  N. Okada,et al.  Electromigration Performance of Multi-level Damascene Copper Interconnects , 2001, Microelectron. Reliab..

[23]  H. Bender,et al.  Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers , 2001 .

[24]  Albert P. Pisano,et al.  POLY-SIGE: A HIGH-Q STRUCTURAL MATERIAL FOR INTEGRATED RF MEMS , 2002 .

[25]  S. Suzuki Surfaces and Interfaces , 2002 .

[26]  K. J. Gabriel,et al.  Post-CMOS processing for high-aspect-ratio integrated silicon microstructures , 2002 .

[27]  R. Howe,et al.  Recent progress in modularly integrated MEMS technologies , 2002, Digest. International Electron Devices Meeting,.

[28]  Paul S. Ho,et al.  Electromigration reliability issues in dual-damascene Cu interconnections , 2002, IEEE Trans. Reliab..

[29]  R. Howe,et al.  Polycrystalline silicon-germanium films for integrated microsystems , 2003 .

[30]  S. Sedky,et al.  Pulsed-laser annealing, a low-thermal-budget technique for eliminating stress gradient in poly-SiGe MEMS structures , 2004, Journal of Microelectromechanical Systems.

[31]  E. Quevy,et al.  Ge-blade damascene process for post-CMOS integration of nano-mechanical resonators , 2004, IEEE Electron Device Letters.

[32]  Effects of failure criteria on the lifetime distribution of dual-damascene Cu line/via on W , 2004 .

[33]  Micromachining of pulsed laser annealed PECVD SixGe1-x deposited at temperatures <= 370 degrees C , 2005 .

[34]  Micromachining of pulsed laser annealed PECVD Si/sub x/Ge/sub 1-x/ deposited at temperatures /spl les/ 370/spl deg/C , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..