Multivariate adaptive regression splines—studies of HIV reverse transcriptase inhibitors

[1]  Frits Daeyaert,et al.  A pharmacophore docking algorithm and its application to the cross‐docking of 18 HIV‐NNRTI's in their binding pockets , 2004, Proteins.

[2]  Yi-Zeng Liang,et al.  Two-step multivariate adaptive regression splines for modeling a quantitative relationship between gas chromatography retention indices and molecular descriptors. , 2003, Journal of chromatography. A.

[3]  Sorin Draghici,et al.  Predicting HIV drug resistance with neural networks , 2003, Bioinform..

[4]  Jian-Hui Jiang,et al.  A New Redundant Variable Pruning Approach - minor Latent Variable Perturbation-PLS Used for QSAR Studies on Anti-HIV Drugs , 2002, Comput. Chem..

[5]  J N Weinstein,et al.  Quantitative structure-antitumor activity relationships of camptothecin analogues: cluster analysis and genetic algorithm-based studies. , 2001, Journal of medicinal chemistry.

[6]  D I Stuart,et al.  Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. , 2000, Structure.

[7]  D. L. Massart,et al.  Erratum to “Local modelling with radial basis function networks ” [Chemometrics and Intelligent Laboratory Systems 50 (2000) 179–198] , 2000 .

[8]  Desire L. Massart,et al.  Local modelling with radial basis function networks , 2000 .

[9]  Jan Balzarini,et al.  Phenylethylthiazolylthiourea (PETT) Non-nucleoside Inhibitors of HIV-1 and HIV-2 Reverse Transcriptases , 2000, The Journal of Biological Chemistry.

[10]  D I Stuart,et al.  Design of MKC-442 (emivirine) analogues with improved activity against drug-resistant HIV mutants. , 1999, Journal of medicinal chemistry.

[11]  Christophe G. Lambert,et al.  Analysis of a Large Structure/Biological Activity Data Set Using Recursive Partitioning , 1999, J. Chem. Inf. Comput. Sci..

[12]  P Mátyus,et al.  Application of neural networks in structure–activity relationships , 1999, Medicinal research reviews.

[13]  Johann Gasteiger,et al.  Neural networks in chemistry and drug design , 1999 .

[14]  A. D. Clark,et al.  Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: inhibitor flexibility is a useful design feature for reducing drug resistance. , 1998, Journal of molecular biology.

[15]  G Schneider,et al.  Artificial neural networks for computer-based molecular design. , 1998, Progress in biophysics and molecular biology.

[16]  D I Stuart,et al.  Crystal structures of HIV-1 reverse transcriptase in complex with carboxanilide derivatives. , 1998, Biochemistry.

[17]  Brendan Larder,et al.  A Rapid Method for Simultaneous Detection of Phenotypic Resistance to Inhibitors of Protease and Reverse Transcriptase in Recombinant Human Immunodeficiency Virus Type 1 Isolates from Patients Treated with Antiretroviral Drugs , 1998, Antimicrobial Agents and Chemotherapy.

[18]  Richard T. Walker,et al.  Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. , 1996, Journal of medicinal chemistry.

[19]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[20]  V. Nguyen-Cong,et al.  Using multivariate adaptive regression splines to QSAR studies of dihydroartemisinin derivatives. , 1996, European journal of medicinal chemistry.

[21]  D. Stuart,et al.  The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO: lessons for inhibitor design. , 1995, Structure.

[22]  Henri Moereels,et al.  Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors , 1995, Nature Structural Biology.

[23]  Yvonne Jones,et al.  High resolution structures of HIV-1 RT from four RT–inhibitor complexes , 1995, Nature Structural Biology.

[24]  Ildiko E. Frank,et al.  Modern nonlinear regression methods , 1995 .

[25]  Anton J. Hopfinger,et al.  Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships , 1994, J. Chem. Inf. Comput. Sci..

[26]  Lyle H. Ungar,et al.  A comparison of two nonparametric estimation schemes: MARS and neural networks , 1993 .

[27]  Bruce R. Kowalski,et al.  MARS: A tutorial , 1992 .

[28]  J. Friedman Multivariate adaptive regression splines , 1990 .

[29]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .