A unified electrostatic and cavitation model for first-principles molecular dynamics in solution.

The electrostatic continuum solvent model developed by [Fattebert and Gygi J. Comput. Chem. 23, 662 (2002); Int. J. Quantum Chem. 93, 139 (2003)] is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. Our model allows for very efficient Car-Parrinello simulations of finite or extended systems in solution and demonstrates a level of accuracy as good as that of established quantum-chemistry continuum solvent methods. We apply this approach to the study of tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights on the dimerization phenomenon.

[1]  Donald G. Truhlar,et al.  Universal Quantum Mechanical Model for Solvation Free Energies Based on Gas-Phase Geometries , 1998 .

[2]  Michael P. Allen,et al.  Computer simulation in chemical physics , 1993 .

[3]  O. Sǐnanoğlu,et al.  Microscopic surface tension down to molecular dimensions and microthermodynamic surface areas of molecules or clusters , 1981 .

[4]  K. Kimura,et al.  Electronic Absorption Spectra of Dimers of p‐Benzosemiquinone Anion and Würster's Cations in Solution , 1968 .

[5]  O. Howarth,et al.  Electron Spin Resonance Study of Mono- and Dimeric Cations of Aromatic Hydrocarbons1 , 1966 .

[6]  P. Claverie,et al.  Studies of solvent effects. 1. Discrete, continuum, and discrete-continuum models and their comparison for some simple cases: ammonium(1+) ion, methanol, and substituted ammonium(1+) ion , 1978 .

[7]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[8]  Giovanni Scalmani,et al.  New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution , 2002 .

[9]  M. Szwarc,et al.  Chemistry of radical-ions. Exchange between diphenyl ethylene and its dimeric-dinegative ions , 1962 .

[10]  D. R. Rosseinsky,et al.  Electrode Potentials and Hydration Energies. Theories and Correlations , 1965 .

[11]  David W. Small,et al.  Intermolecular pi-to-pi bonding between stacked aromatic dyads. Experimental and theoretical binding energies and near-IR optical transitions for phenalenyl radical/radical versus radical/cation dimerizations. , 2004, Journal of the American Chemical Society.

[12]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[13]  Alfredo Pasquarello,et al.  First-principles Molecular Dynamics , 1993 .

[14]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[15]  P. Umari,et al.  Dielectric susceptibility of dipolar molecular liquids by ab initio molecular dynamics: application to liquid HCl , 2004 .

[16]  W. D. Phillips,et al.  Solution Dimerization of the Tetracyanoquinodimethane Ion Radical , 1965 .

[17]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[18]  V. Barone,et al.  A plane wave implementation of the polarizable continuum model , 2000 .

[19]  P. Ordejón,et al.  A DFT-Based QM-MM Approach Designed for the Treatment of Large Molecular Systems: Application to Chorismate Mutase , 2003 .

[20]  Caterina Benzi,et al.  Building cavities in a fluid of spherical or rod‐like particles: A contribution to the solvation free energy in isotropic and anisotropic polarizable continuum model , 2005, J. Comput. Chem..

[21]  Iñaki Tuñón,et al.  Continuum-uniform approach calculations of the solubility of hydrocarbons in water , 1993 .

[22]  Howard Reiss,et al.  Statistical Mechanics of Rigid Spheres , 1959 .

[23]  C. Cramer,et al.  Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. , 1999, Chemical reviews.

[24]  J. Kochi,et al.  Stable (long-bonded) dimers via the quantitative self-association of different cationic, anionic, and uncharged pi-radicals: structures, energetics, and optical transitions. , 2003, Journal of the American Chemical Society.

[25]  Hui Li,et al.  Improving the efficiency and convergence of geometry optimization with the polarizable continuum model: New energy gradients and molecular surface tessellation , 2004, J. Comput. Chem..

[26]  Howard Reiss,et al.  Aspects of the Statistical Thermodynamics of Real Fluids , 1960 .

[27]  K. Merz,et al.  Combined Quantum Mechanical/Molecular Mechanical Methodologies Applied to Biomolecular Systems , 1999 .

[28]  R. Metzger,et al.  Crystal and molecular structure and EPR triplet spin excitons of NBP TCNQ, the 1:1 salt of 5-(1-butyl) phenazinium (NBP) with 2,2'- (2,5-cyclohexadiene-1,4-diylidene)- bispropanedinitrile (TCNQ) , 1983 .

[29]  R. Chang Dimerization of the tetracyanoethylene anion radical , 1970 .

[30]  M Leslie,et al.  The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method , 1985 .

[31]  Sandro Scandolo,et al.  How well do Car-Parrinello simulations reproduce the Born-Oppenheimer surface ? , 2001, cond-mat/0107415.

[32]  Jacopo Tomasi,et al.  Free energy and entropy for inserting cavities in water: Comparison of Monte Carlo simulation and scaled particle theory results , 1997 .

[33]  R. E. Del Sesto,et al.  Exceptionally Long (≥2.9 Å) C-C Bonds between [TCNE]- Ions: Two-Electron, Four-Center π*-π* C-C Bonding in π-[TCNE]22. , 2001, Angewandte Chemie.

[34]  D. Fenske,et al.  Strukturen sterisch überfüllter oder ladungsgestörter Moleküle. 9. Tetracyanethen‐Kalium‐Dimethoxyethan , 1991 .

[35]  Manuel F. Ruiz-López,et al.  Ab initio SCF calculations on electrostatically solvated molecules using a deformable three axes ellipsoidal cavity , 1983 .

[36]  D. Chandler,et al.  Scaling of Hydrophobic Solvation Free Energies , 2001 .

[37]  Jean-Luc Fattebert,et al.  First‐principles molecular dynamics simulations in a continuum solvent , 2003 .

[38]  Martin Karplus,et al.  A Smooth Solvation Potential Based on the Conductor-Like Screening Model , 1999 .

[39]  J. W. Raebiger,et al.  1-D and 2-D homoleptic dicyanamide structures, [Ph4P]2[CoII[N(CN)2]4] and [Ph4P][M[N(CN)2]3] (M = Mn, Co). , 2001, Inorganic chemistry.

[40]  J. Tomasi,et al.  Dispersion and repulsion contributions to the solvation energy: Refinements to a simple computational model in the continuum approximation , 1991 .

[41]  H. Uhlig The Solubilities of Gases and Surface Tension , 1937 .

[42]  P. Claverie,et al.  Improvements of the continuum model. 1. Application to the calculation of the vaporization thermodynamic quantities of nonassociated liquids , 1988 .

[43]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[44]  K. Wiberg,et al.  Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations , 1996 .

[45]  Jacopo Tomasi,et al.  Nonequilibrium solvation: An ab initio quantum‐mechanical method in the continuum cavity model approximation , 1993 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[48]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[49]  S. Lindeman,et al.  Intervalence (charge-resonance) transitions in organic mixed-valence systems. Through-space versus through-bond electron transfer between bridged aromatic (redox) centers. , 2003, Journal of the American Chemical Society.

[50]  N. Marzari,et al.  π-Stacking in charged thiophene oligomers , 2004 .

[51]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[52]  T. Arias,et al.  Joint density-functional theory: ab initio study of Cr2O3 surface chemistry in solution. , 2005, The journal of physical chemistry. B.

[53]  D. Corti,et al.  Scaled Particle Theory Revisited: New Conditions and Improved Predictions of the Properties of the Hard Sphere Fluid† , 2004 .

[54]  Joel S. Miller,et al.  Exceptionally Long (≥2.9 Å) CC Bonding Interactions in π‐[TCNE]22− Dimers: Two‐Electron Four‐Center Cation‐Mediated CC Bonding Interactions Involving π* Electrons , 2002 .

[55]  Nicola Marzari,et al.  Static and dynamical properties of heavy water at ambient conditions from first-principles molecular dynamics. , 2005, The Journal of chemical physics.

[56]  C. Cramer,et al.  General parameterized SCF model for free energies of solvation in aqueous solution , 1991 .

[57]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[58]  H. Ågren,et al.  A self-consistent reaction field approach to liquid photoionization , 1987 .

[59]  Gerbrand Ceder,et al.  Electronic-enthalpy functional for finite systems under pressure. , 2005, Physical review letters.

[60]  M. Itoh Formation and spectrum of tetracyanoethylene dimer anion (TCNE)2 , 1970 .

[61]  J. Simons,et al.  Theoretical analysis of the electronic structure and bonding stability of the TCNE dimer dianion (TCNE) 2 2-. , 2003, Journal of the American Chemical Society.

[62]  A. Epstein,et al.  Ferromagnetically coupled linear electron-transfer complexes. Structural and magnetic characterization of [Cr(.eta.6-C6MexH6-x)2][TCNE] (x = 0,3,6) and S = 0 [TCNE]22- , 1989 .

[63]  Paul Tavan,et al.  A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields , 1999 .

[64]  Jean-Luc Fattebert,et al.  Density functional theory for efficient ab initio molecular dynamics simulations in solution , 2002, J. Comput. Chem..

[65]  Francois Gygi,et al.  Towards an assessment of the accuracy of density functional theory for first principles simulations of water. II. , 2004, The Journal of chemical physics.

[66]  R. Schmid,et al.  Ab initio molecular dynamics with a continuum solvation model , 2003 .

[67]  Jacopo Tomasi,et al.  Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation , 1989 .

[68]  J. Huisman The Netherlands , 1996, The Lancet.

[69]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[70]  R. Pierotti,et al.  A scaled particle theory of aqueous and nonaqueous solutions , 1976 .

[71]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .

[72]  J. Tomasi,et al.  Ab initio study of solvated molecules: A new implementation of the polarizable continuum model , 1996 .