Homoplasy in genome-wide analysis of rare amino acid replacements: the molecular-evolutionary basis for Vavilov's law of homologous series

[1]  N. Vavilov,et al.  The law of homologous series in variation , 1922, Journal of Genetics.

[2]  A. Oskooi Molecular Evolution and Phylogenetics , 2008 .

[3]  E. Koonin,et al.  Analysis of rare amino acid replacements supports the Coelomata clade. , 2007, Molecular biology and evolution.

[4]  Julien Dutheil,et al.  Detecting groups of coevolving positions in a molecule: a clustering approach , 2007, BMC Evolutionary Biology.

[5]  V. K. Shumny Two brilliant generalizations of Nikolai Ivanovich Vavilov (for the 120th anniversary) , 2007, Russian Journal of Genetics.

[6]  M. Brudno,et al.  Extensive parallelism in protein evolution , 2007, Biology Direct.

[7]  J. Garcia-Fernández,et al.  Rare coding sequence changes are consistent with Ecdysozoa, not Coelomata. , 2007, Molecular biology and evolution.

[8]  Liran Carmel,et al.  Ecdysozoan clade rejected by genome-wide analysis of rare amino acid replacements. , 2007, Molecular biology and evolution.

[9]  A. Vogler,et al.  The nematode–arthropod clade revisited: phylogenomic analyses from ribosomal protein genes misled by shared evolutionary biases , 2007, Cladistics : the international journal of the Willi Hennig Society.

[10]  I. Zakharov Nikolai I Vavilov (1887–1943) , 2005, Journal of Biosciences.

[11]  T. Grishaeva,et al.  Similarity of the domain structure of proteins as a basis for the conservation of meiosis. , 2007, International review of cytology.

[12]  Edward Susko,et al.  Testing for covarion-like evolution in protein sequences. , 2007, Molecular biology and evolution.

[13]  M. Spencer,et al.  Topological Estimation Biases with Covarion Evolution , 2007, Journal of Molecular Evolution.

[14]  Ben Lehner,et al.  Combinatorial RNA interference in Caenorhabditis elegans reveals that redundancy between gene duplicates can be maintained for more than 80 million years of evolution , 2006, Genome Biology.

[15]  J. Boore,et al.  The use of genome-level characters for phylogenetic reconstruction. , 2006, Trends in ecology & evolution.

[16]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[17]  Frédéric Delsuc,et al.  Heterotachy and long-branch attraction in phylogenetics , 2005, BMC Evolutionary Biology.

[18]  B. Snel,et al.  Genome trees and the nature of genome evolution. , 2005, Annual review of microbiology.

[19]  H. Philippe,et al.  Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. , 2005, Molecular biology and evolution.

[20]  F. Delsuc,et al.  Phylogenomics and the reconstruction of the tree of life , 2005, Nature Reviews Genetics.

[21]  J. McInerney,et al.  The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. , 2005, Molecular biology and evolution.

[22]  J. Dopazo,et al.  Genome-scale evidence of the nematode-arthropod clade , 2005, Genome Biology.

[23]  Richard R. Copley,et al.  Animal Phylogeny: Fatal Attraction , 2005, Current Biology.

[24]  G. Glazko,et al.  Molecular dating: ape bones agree with chicken entrails. , 2005, Trends in genetics : TIG.

[25]  Walter M. Fitch,et al.  The molecular evolution of cytochrome c in eukaryotes , 1976, Journal of Molecular Evolution.

[26]  Michael W. Berry,et al.  An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage , 2004, BMC Bioinformatics.

[27]  N. Okada,et al.  SINEs of speciation: tracking lineages with retroposons. , 2004, Trends in ecology & evolution.

[28]  E. Koonin,et al.  Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer. , 2004, Gene.

[29]  Patrick Aloy,et al.  Systematic searches for molecular synapomorphies in model metazoan genomes give some support for Ecdysozoa after accounting for the idiosyncrasies of Caenorhabditis elegans , 2004, Evolution & development.

[30]  Sudhir Kumar,et al.  Precision of molecular time estimates. , 2004, Trends in genetics : TIG.

[31]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[32]  D. Severson,et al.  Comparative genome analysis of the yellow fever mosquito Aedes aegypti with Drosophila melanogaster and the malaria vector mosquito Anopheles gambiae. , 2004, The Journal of heredity.

[33]  D. Graur,et al.  Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. , 2004, Trends in genetics : TIG.

[34]  E. Koonin,et al.  Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. , 2003, Genome research.

[35]  W. Fitch,et al.  An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution , 1970, Biochemical Genetics.

[36]  K. Hammer,et al.  Are Vavilov's law of homologous series and synteny related? , 2004, Genetic Resources and Crop Evolution.

[37]  S Blair Hedges,et al.  The colonization of land by animals: molecular phylogeny and divergence times among arthropods. , 2004, BMC biology.

[38]  M. Telford,et al.  The place of phylogeny and cladistics in Evo-Devo research. , 2003, The International journal of developmental biology.

[39]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[40]  T. Cavalier-smith,et al.  The root of the eukaryote tree pinpointed , 2003, Current Biology.

[41]  Alexey S Kondrashov,et al.  Patterns in spontaneous mutation revealed by human-baboon sequence comparison. , 2002, Trends in genetics : TIG.

[42]  S. Blair Hedges,et al.  The origin and evolution of model organisms , 2002, Nature Reviews Genetics.

[43]  N. Grishin,et al.  Genome trees and the tree of life. , 2002, Trends in genetics : TIG.

[44]  T. Cavalier-smith,et al.  Rooting the Eukaryote Tree by Using a Derived Gene Fusion , 2002, Science.

[45]  J. Huelsenbeck Testing a covariotide model of DNA substitution. , 2002, Molecular biology and evolution.

[46]  T. Gojobori,et al.  Bmc Evolutionary Biology the Evolutionary Position of Nematodes , 2022 .

[47]  N. Galtier,et al.  Maximum-likelihood phylogenetic analysis under a covarion-like model. , 2001, Molecular biology and evolution.

[48]  G. Pesole,et al.  Long-branch attraction phenomenon and the impact of among-site rate variation on rodent phylogeny. , 2000, Gene.

[49]  P. Holland,et al.  Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.

[50]  N. Lartillot,et al.  The new animal phylogeny: reliability and implications. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[51]  P. Sharp,et al.  Evidence for a high frequency of simultaneous double-nucleotide substitutions. , 2000, Science.

[52]  S. Brenner,et al.  Late changes in spliceosomal introns define clades in vertebrate evolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[53]  N Okada,et al.  Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Michael S. Y. Lee Molecular Clock Calibrations and Metazoan Divergence Dates , 1999, Journal of Molecular Evolution.

[55]  Leo X. Liu,et al.  Large-scale taxonomic profiling of eukaryotic model organisms: a comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes. , 1998, Genome research.

[56]  F. Ayala,et al.  Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Steel,et al.  Modeling the covarion hypothesis of nucleotide substitution. , 1998, Mathematical biosciences.

[58]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[59]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[60]  W. Hennig Grundzüge einer Theorie der phylogenetischen Systematik , 1950 .