Resolution tunable ring oscillator type TDC

This paper presents a high resolution tunable ring oscillator type TDC (Time to Digital Converter). The proposed structure uses 2 ring oscillators composed of 8 differential inverters. Can be activated by selecting one of the three resolution in the structure, and can be selected in a ratio of 15/16, 13/32, 63/64, depending on fast and slow of the differential inverter delay. Also to increase the total conversion range of the TDC, since when added to the MSB 1bit added only one D-FF(D flip-flop), has the advantage also in the power consumption and chip area. The resolution of TDC is 1.54ps, maximum range is 50.6ns when the differential inverter delay ratio is 31/32. This paper is based on 28nm CMOS process.

[1]  Jin-Sheng Wang,et al.  A PVT tolerant 0.18MHz to 600MHz self-calibrated digital PLL in 90nm CMOS process , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[2]  A.A. Abidi,et al.  A 9 b, 1.25 ps Resolution Coarse–Fine Time-to-Digital Converter in 90 nm CMOS that Amplifies a Time Residue , 2008, IEEE Journal of Solid-State Circuits.

[3]  Poras T. Balsara,et al.  1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  P. Dudek,et al.  A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line , 2000, IEEE Journal of Solid-State Circuits.

[5]  J.A. Tierno,et al.  A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI , 2008, IEEE Journal of Solid-State Circuits.

[6]  K. Muhammad,et al.  All-digital PLL and transmitter for mobile phones , 2005, IEEE Journal of Solid-State Circuits.

[7]  Poras T. Balsara,et al.  Digitally controlled oscillator (DCO)-based architecture for RF frequency synthesis in a deep-submicrometer CMOS Process , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[8]  P. Nilsson,et al.  A digitally controlled PLL for SoC applications , 2004, IEEE Journal of Solid-State Circuits.

[9]  Jae-Yoon Sim,et al.  A 1 GHz ADPLL With a 1.25 ps Minimum-Resolution Sub-Exponent TDC in 0.18 $\mu$ m CMOS , 2010, IEEE Journal of Solid-State Circuits.

[10]  M. Perrott,et al.  An efficient high-resolution 11-bit noise-shaping multipath gated ring oscillator TDC , 2008, 2008 IEEE Symposium on VLSI Circuits.

[11]  Pavan Kumar Hanumolu,et al.  A Design Procedure for All-Digital Phase-Locked Loops Based on a Charge-Pump Phase-Locked-Loop Analogy , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[12]  Wei-Zen Chen,et al.  A 7.1mW 10GHz all-digital frequency synthesizer with dynamically reconfigurable digital loop filter in 90nm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[13]  Wei-Zen Chen,et al.  A 7.1 mW, 10 GHz All Digital Frequency Synthesizer With Dynamically Reconfigured Digital Loop Filter in 90 nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[14]  D. J. Kinniment,et al.  Time difference amplifier , 2002 .

[15]  Pavan Kumar Hanumolu,et al.  A Digital PLL with a Stochastic Time-to-Digital Converter , 2006, VLSIC 2006.

[16]  Fa Foster Dai,et al.  A 12-bit vernier ring time-to-digital converter in 0.13μm CMOS technology , 2009, 2009 Symposium on VLSI Circuits.

[17]  Pavan Kumar Hanumolu,et al.  A Digital PLL With a Stochastic Time-to-Digital Converter , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.