Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing

Ultrathin plasmonic metasurfaces have proven their ability to control and manipulate light at unprecedented levels, leading to exciting optical functionalities and applications. Although to date metasurfaces have mainly been investigated from an electromagnetic perspective, their ultrathin nature may also provide novel and useful mechanical properties. Here we propose a thin piezoelectric plasmonic metasurface forming the resonant body of a nanomechanical resonator with simultaneously tailored optical and electromechanical properties. We experimentally demonstrate that it is possible to achieve high thermomechanical coupling between electromagnetic and mechanical resonances in a single ultrathin piezoelectric nanoplate. The combination of nanoplasmonic and piezoelectric resonances allows the proposed device to selectively detect long-wavelength infrared radiation with unprecedented electromechanical performance and thermal capabilities. These attributes lead to the demonstration of a fast, high-resolution, uncooled infrared detector with ∼80% absorption for an optimized spectral bandwidth centered around 8.8 μm.

[1]  A. Pisano,et al.  Piezoelectric Aluminum Nitride Vibrating Contour-Mode MEMS Resonators , 2006, Journal of Microelectromechanical Systems.

[2]  Francisco Medina,et al.  Circuit modeling of multiband high-impedance surface absorbers in the microwave regime , 2011 .

[3]  Paolo Lugli,et al.  Low-cost thermo-optic imaging sensors: a detection principle based on tunable one-dimensional photonic crystals. , 2013, ACS applied materials & interfaces.

[4]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[5]  Kan Yao,et al.  Generalized laws of reflection and refraction from transformation optics , 2012, 1202.5829.

[6]  Juan Sebastian Gomez-Diaz,et al.  Sinusoidally Modulated Graphene Leaky-Wave Antenna for Electronic Beamscanning at THz , 2013, IEEE Transactions on Terahertz Science and Technology.

[7]  D. Pozar Flat lens antenna concept using aperture coupled microstrip patches , 1996 .

[8]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[9]  Marion B. Reine,et al.  HgCdTe photodiodes for IR detection: a review , 2001, SPIE OPTO.

[10]  Xinjian Yi,et al.  Characterizations of VO2-based uncooled microbolometer linear array , 2001 .

[11]  M. Rinaldi,et al.  Fast and high resolution thermal detector based on an aluminum nitride piezoelectric microelectromechanical resonator with an integrated suspended heat absorbing element , 2013 .

[12]  A silicon electromechanical photodetector. , 2013, Nano letters.

[13]  G. Gerlach,et al.  Review of micromachined thermopiles for infrared detection , 2007 .

[14]  Hai Zhu,et al.  Plasmonically enhanced thermomechanical detection of infrared radiation. , 2013, Nano letters.

[15]  Nikolay I. Zheludev,et al.  A magneto-electro-optical effect in a plasmonic nanowire material , 2015, Nature Communications.

[16]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[17]  A. Tazzoli,et al.  Experimental Investigation of Thermally Induced Nonlinearities in Aluminum Nitride Contour-Mode MEMS Resonators , 2012, IEEE Electron Device Letters.

[18]  E. Rubiola,et al.  Phase Noise and Frequency Stability in Oscillators , 2008 .

[19]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[20]  Richard Soref,et al.  Wideband perfect light absorber at midwave infrared using multiplexed metal structures. , 2012, Optics letters.

[21]  Lester J. Kozlowski,et al.  Recent advances in staring hybrid focal plane arrays: comparison of HgCdTe, InGaAs, and GaAs/AlGaAs detector technologies , 1994, Optics & Photonics.

[22]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[23]  D. Pozar Microwave Engineering , 1990 .

[24]  A. Rogalski Infrared detectors: status and trends , 2003 .

[25]  Joseph J. Talghader,et al.  Spectral selectivity in infrared thermal detection , 2012, Light: Science & Applications.

[26]  Chengjie Zuo,et al.  Super-high-frequency two-port AlN contour-mode resonators for RF applications , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[27]  Christian Menolfi,et al.  Uncooled low-cost thermal imager based on micromachined CMOS integrated sensor array , 2001 .

[28]  Michael R. Watts,et al.  Optical resonators: Microphotonic thermal imaging , 2007 .

[29]  Masafumi Kimata,et al.  Wavelength selective uncooled infrared sensor by plasmonics , 2012 .

[30]  Toshihiro Okamoto,et al.  Electrically driven plasmon chip: Active plasmon filter , 2013 .

[31]  C. T. Foxon,et al.  Far-infrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy , 2008 .

[32]  Eric Plum,et al.  An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. , 2013, Nature nanotechnology.

[33]  Young Ho Kim,et al.  Influencing factors on the pyroelectric properties of Pb(Zr,Ti)O3 thin film for uncooled infrared detector , 2005 .

[34]  Olaf Lenzmann,et al.  Status and Trends , 1991 .

[35]  D. Czaplewski,et al.  Compact nanomechanical plasmonic phase modulators , 2014, Nature Photonics.

[36]  A. Alú,et al.  Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces , 2012, 1211.4919.

[37]  M. Roukes,et al.  Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. , 2007, Nature nanotechnology.

[38]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[39]  M. R. Freeman,et al.  Multifunctional Nanomechanical Systems via Tunably Coupled Piezoelectric Actuation , 2007, Science.

[40]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[41]  R. Olsson,et al.  Post-CMOS-Compatible Aluminum Nitride Resonant MEMS Accelerometers , 2008, Journal of Microelectromechanical Systems.

[42]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.