Space-Time Invariant Measures, Entropy, and Dimension for Stochastic Ginzburg–Landau Equations

Abstract: We consider a randomly forced Ginzburg–Landau equation on an unbounded domain. The forcing is smooth and homogeneous in space and white noise in time. We prove existence and smoothness of solutions, existence of an invariant measure for the corresponding Markov process and we define the spatial densities of topological entropy, of measure-theoretic entropy, and of upper box-counting dimension. We prove inequalities relating these different quantities. The proof of existence of an invariant measure uses the compact embedding of some space of uniformly smooth functions into the space of locally square-integrable functions and a priori bounds on the semi-flow in these spaces. The bounds on the entropy follow from spatially localised estimates on the rate of divergence of nearby orbits and on the smoothing effect of the evolution.

[1]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[2]  D. Ruelle Large volume limit of the distribution of characteristic exponents in turbulence , 1982 .

[3]  A. Fursikov,et al.  Mathematical Problems of Statistical Hydromechanics , 1988 .

[4]  T. Funaki Regularity properties for stochastic partial differential equations of parabolic type , 1991 .

[5]  T. Funaki The reversible measures of multi-dimensional Ginzburg-Landau type continuum model , 1991 .

[6]  Lai-Sang Young,et al.  Ergodic Theory of Chaotic Dynamical Systems , 1993 .

[7]  P. Collet Thermodynamic limit of the Ginzburg-Landau equations , 1993 .

[8]  Franco Flandoli,et al.  Ergodicity of the 2-D Navier-Stokes equation under random perturbations , 1995 .

[9]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? , 1995 .

[10]  M. Qian,et al.  Smooth Ergodic Theory of Random Dynamical Systems , 1995 .

[11]  M. Bartuccelli,et al.  Length scales in solutions of the complex Ginzburg-Landau equation , 1996 .

[12]  J. Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Invariant measures for stochastic evolution equations , 1996 .

[13]  J. Ginibre,et al.  The Cauchy problem in local spaces for the complex Ginzburg-Landau equation I: compactness methods , 1996 .

[14]  J. Ginibre,et al.  The Cauchy Problem in Local Spaces for the Complex Ginzburg—Landau Equation¶II. Contraction Methods , 1997 .

[15]  A. Mielke Bounds for the solutions of the complex Ginzburg-Landau equation in terms of the dispersion parameters , 1998 .

[16]  Arnaud Debussche,et al.  Hausdorff dimension of a random invariant set , 1998 .

[17]  S. Kuksin Stochastic nonlinear Schrodinger equation 1. A priori estimates , 1999 .

[18]  J. Eckmann,et al.  The definition and measurement of the topological entropy per unit volume in parabolic PDEs , 1999 .

[19]  Extensive Properties of the Complex Ginzburg–Landau Equation , 1998, chao-dyn/9802006.

[20]  A. Shirikyan,et al.  Stochastic Dissipative PDE's and Gibbs Measures , 2000 .

[21]  Topological Entropy and ε-Entropy for Damped Hyperbolic Equations , 1999, math/9908080.

[22]  J. Bricmont,et al.  Ergodicity of the 2D Navier--Stokes Equations¶with Random Forcing , 2001 .