Evolutionary Trajectories and Biogeochemical Impacts of Marine Eukaryotic Phytoplankton

▪ Abstract The evolutionary succession of marine photoautotrophs began with the origin of photosynthesis in the Archean Eon, perhaps as early as 3.8 billion years ago. Since that time, Earth's atmosphere, continents, and oceans have undergone substantial cyclic and secular physical, chemical, and biological changes that selected for different phytoplankton taxa. Early in the history of eukaryotic algae, between 1.6 and 1.2 billion years ago, an evolutionary schism gave rise to “green” (chlorophyll b–containing) and “red” (chlorophyll c–containing) plastid groups. Members of the “green” plastid line were important constituents of Neoproterozoic and Paleozoic oceans, and, ultimately, one green clade colonized land. By the mid-Mesozoic, the green line had become ecologically less important in the oceans. In its place, three groups of chlorophyll c–containing eukaryotes, the dinoflagellates, coccolithophorids, and diatoms, began evolutionary trajectories that have culminated in ecological dominance in the con...

[1]  P. Falkowski,et al.  Biological overprint of the geological carbon cycle , 2005 .

[2]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[3]  P. Falkowski,et al.  Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups , 2004 .

[4]  A. Paytan,et al.  Seawater Sulfur Isotope Fluctuations in the Cretaceous , 2004, Science.

[5]  Debashish Bhattacharya,et al.  A molecular timeline for the origin of photosynthetic eukaryotes. , 2004, Molecular biology and evolution.

[6]  G. Muyzer,et al.  The Rise of the Rhizosolenid Diatoms , 2004, Science.

[7]  P. Dutton,et al.  Reversible redox energy coupling in electron transfer chains , 2004, Nature.

[8]  A. Knoll,et al.  Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. , 2004, American journal of botany.

[9]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[10]  A. Knoll,et al.  Why is the Land Green and the Ocean Red , 2004 .

[11]  J. Lamerdin,et al.  The photosynthetic apparatus of Prochlorococcus: Insights through comparative genomics , 2004, Photosynthesis Research.

[12]  Roger E. Summons,et al.  A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia , 2003 .

[13]  J. Barron PLANKTONIC MARINE DIATOM RECORD OF THE PAST 18 M.Y.: APPEARANCES AND EXTINCTIONS IN THE PACIFIC AND SOUTHERN OCEANS , 2003 .

[14]  H. Paerl,et al.  Phytoplankton Photopigments as Indicators of Estuarine and Coastal Eutrophication , 2003 .

[15]  P. Keeling,et al.  Nucleus-Encoded, Plastid-Targeted Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Indicates a Single Origin for Chromalveolate Plastids , 2003 .

[16]  P. Falkowski,et al.  The evolutionary inheritance of elemental stoichiometry in marine phytoplankton , 2003, Nature.

[17]  Ronald E. Martin The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation , 2003 .

[18]  S. Baldauf,et al.  The Deep Roots of Eukaryotes , 2003, Science.

[19]  Yanan Shen,et al.  Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin , 2003, Nature.

[20]  P. Keeling,et al.  Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. , 2003, Molecular biology and evolution.

[21]  A. Knoll Life on a Young Planet: The First Three Billion Years of Evolution on Earth , 2003 .

[22]  Paul G. Falkowski,et al.  THE MESOZOIC RADIATION OF EUKARYOTIC ALGAE: THE PORTABLE PLASTID HYPOTHESIS 1 , 2003 .

[23]  H. Elderfield,et al.  A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes , 2003 .

[24]  R. DeFries,et al.  Global distribution of C3 and C4 vegetation: Carbon cycle implications , 2003 .

[25]  Victor Smetacek,et al.  Architecture and material properties of diatom shells provide effective mechanical protection , 2003, Nature.

[26]  J. Palmer,et al.  THE SYMBIOTIC BIRTH AND SPREAD OF PLASTIDS: HOW MANY TIMES AND WHODUNIT? , 2003 .

[27]  T. Cavalier-smith Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  P. Falkowski,et al.  Phytoplankton and Their Role in Primary, New, and Export Production , 2003 .

[29]  M. Fasham,et al.  Ocean biogeochemistry: the role of the ocean carbon cycle in global change , 2003 .

[30]  R. Twitchett,et al.  Permian–Triassic sedimentology of Jameson Land, East Greenland: incised submarine channels in an anoxic basin , 2002, Journal of the Geological Society.

[31]  D. Conley Terrestrial ecosystems and the global biogeochemical silica cycle , 2002 .

[32]  R. Leckie,et al.  Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous , 2002 .

[33]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[34]  Debashish Bhattacharya,et al.  A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Debashish Bhattacharya,et al.  The single, ancient origin of chromist plastids , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Knoll,et al.  Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[38]  A. Knoll,et al.  70 Ma nonmarine diatoms from northern Mexico , 2002 .

[39]  A. Knoll,et al.  Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia , 2002 .

[40]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[41]  D. Bhattacharya,et al.  Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. , 2001, American journal of botany.

[42]  J. Reinfelder reply: Carbon fixation: Photosynthesis in a marine diatom , 2001, Nature.

[43]  A. Knoll,et al.  Morphological and ecological complexity in early eukaryotic ecosystems , 2001, Nature.

[44]  G. Retallack Cenozoic Expansion of Grasslands and Climatic Cooling , 2001, The Journal of Geology.

[45]  Victor Smetacek,et al.  A watery arms race , 2001, Nature.

[46]  D. Roos,et al.  Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. , 2001, Molecular biology and evolution.

[47]  D. Bhattacharya,et al.  PHYLOGENY OF THE BANGIOPHYCIDAE (RHODOPHYTA) AND THE SECONDARY ENDOSYMBIOTIC ORIGIN OF ALGAL PLASTIDS , 2000 .

[48]  W. Doolittle,et al.  A kingdom-level phylogeny of eukaryotes based on combined protein data. , 2000, Science.

[49]  F. Morel,et al.  Unicellular C4 photosynthesis in a marine diatom , 2000, Nature.

[50]  Talyzina,et al.  Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lükati Formation, Estonia. , 2000, Review of palaeobotany and palynology.

[51]  J. M. Moldowan,et al.  Chemical Signals for Early Evolution of Major Taxa: Biosignatures and Taxon-Specific Biomarkers , 2000 .

[52]  M. Brzezinski,et al.  A first look at the distribution of the stable isotopes of silicon in natural waters , 2000 .

[53]  N. Butterfield,et al.  Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes , 2000, Paleobiology.

[54]  D. Schrag,et al.  Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate , 2000 .

[55]  E. Kellogg The Grasses: A Case Study in Macroevolution , 2000 .

[56]  L. Medlin,et al.  A review of the evolution of the diatoms - a total approach using molecules, morphology and geology , 2000 .

[57]  M. Maldonado,et al.  Decline in Mesozoic reef-building sponges explained by silicon limitation , 1999, Nature.

[58]  Cinzia Spencer-Cervato THE CENOZOIC DEEP SEA MICROFOSSIL RECORD: EXPLORATIONS OF THE DSDP/ODP SAMPLE SET USING THE NEPTUNE DATABASE , 1999 .

[59]  C. Osburn,et al.  The record of global change in mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, Northeastern Mexico , 1999 .

[60]  R. Twitchett Palaeoenvironments and faunal recovery after the end-Permian mass extinction , 1999 .

[61]  Charles F. Delwiche,et al.  Tracing the Thread of Plastid Diversity through the Tapestry of Life , 1999, The American Naturalist.

[62]  A. J. Kaufman,et al.  THE ABUNDANCE OF 13C IN MARINE ORGANIC MATTER AND ISOTOPIC FRACTIONATION IN THE GLOBAL BIOGEOCHEMICAL CYCLE OF CARBON DURING THE PAST 800 MA , 1999 .

[63]  H. Strauss GEOLOGICAL EVOLUTION FROM ISOTOPE PROXY SIGNALS : SULFUR , 1999 .

[64]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[65]  Roger E. Summons,et al.  2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis , 1999, Nature.

[66]  K. Okada,et al.  Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts , 1999, Nature.

[67]  Jukka Jernvall,et al.  LASER CONFOCAL MICROSCOPY AND GEOGRAPHIC INFORMATION SYSTEMS IN THE STUDY OF DENTAL MORPHOLOGY , 1999 .

[68]  V. Smetácek,et al.  Diatoms and the ocean carbon cycle. , 1999, Protist.

[69]  F. Azam,et al.  Accelerated dissolution of diatom silica by marine bacterial assemblages , 1999, Nature.

[70]  M. Rosing,et al.  13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west greenland , 1999, Science.

[71]  L. Jacobs,et al.  The Origin of Grass-Dominated Ecosystems , 1999 .

[72]  R. Bambach Energetics in the global marinefauna: A connection between terrestrial diversification and change in the marine biosphere , 1999 .

[73]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[74]  A. Paytan,et al.  Sulfur isotopic composition of cenozoic seawater sulfate , 1998, Science.

[75]  S. Stanley,et al.  Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry , 1998 .

[76]  D. Siegel Resource competition in a discrete environment: Why are plankton distributions paradoxical? , 1998 .

[77]  Talyzina,et al.  Biogeochemical evidence for dinoflagellate ancestors in the early cambrian , 1998, Science.

[78]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[79]  R. Bidigare,et al.  Does growth rate affect ketone unsaturation and intracellular carbon isotopic variability in Emiliania huxleyi , 1998 .

[80]  D. Sankoff,et al.  Genome structure and gene content in protist mitochondrial DNAs. , 1998, Nucleic acids research.

[81]  F. Wilkerson,et al.  Silicate regulation of new production in the equatorial Pacific upwelling , 1998, Nature.

[82]  Debashish Bhattacharya,et al.  Algal Phylogeny and the Origin of Land Plants , 1998 .

[83]  Robert R. Bidigare,et al.  Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum , 1997 .

[84]  J. Ehleringer,et al.  Global vegetation change through the Miocene/Pliocene boundary , 1997, Nature.

[85]  G. Retallack Neogene expansion of the North American prairie , 1997 .

[86]  H. Jenkyns,et al.  Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event , 1997 .

[87]  Richard J. Howarth,et al.  Statistics For Strontium Isotope Stratigraphy: A Robust Lowess Fit to the Marine Sr‐Isotope Curve For 0 to 206 Ma, With Look‐Up Table For Derivation of Numeric Age , 1997, The Journal of Geology.

[88]  J. Sepkoski,et al.  Biodiversity: Past, Present, and Future , 1997, Journal of Paleontology.

[89]  D. Wolf-Gladrow,et al.  CO2aq‐dependent photosynthetic 13C fractionation in the ocean: A model versus measurements , 1997 .

[90]  S. Wright,et al.  Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods , 1997 .

[91]  Isozaki,et al.  Permo-Triassic Boundary Superanoxia and Stratified Superocean: Records from Lost Deep Sea , 1997, Science.

[92]  N. Butterfield Plankton ecology and the Proterozoic-Phanerozoic transition , 1997, Paleobiology.

[93]  J. Thurow,et al.  Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys , 1997 .

[94]  J. Meunier,et al.  Plant impact on the biogeochemical cycle of silicon and related weathering processes , 1997 .

[95]  John A. Raven,et al.  The Vacuole: a Cost-Benefit Analysis , 1997 .

[96]  L. Medlin,et al.  Phylogenetic relationships of the 'golden algae' (haptophytes, heterokont chromophytes) and their plastids , 1997 .

[97]  G. Williams,et al.  The early Mesozoic radiation of dinoflagellates , 1996, Paleobiology.

[98]  David G. Mann,et al.  Algae: An Introduction to Phycology , 1996 .

[99]  L. Hardie Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. , 1996 .

[100]  D. Watt,et al.  Chemostratigraphic reconstruction of biofacies: Molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors , 1996 .

[101]  K. Föllmi 160 m.y. record of marine sedimentary phosphorus burial: Coupling of climate and continental weathering under greenhouse and icehouse conditions , 1995 .

[102]  H. Grenfell,et al.  Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”) , 1995 .

[103]  Mark V. Lomolino,et al.  Species Diversity in Space and Time. , 1996 .

[104]  D. M. Nelson,et al.  The Silica Balance in the World Ocean: A Reestimate , 1995, Science.

[105]  Marie-Pierre Aubry,et al.  A revised Cenozoic geochronology and chronostratigraphy , 1995 .

[106]  F. Agterberg,et al.  A Triassic, Jurassic and Cretaceous Time Scale , 1995 .

[107]  M. Melkonian,et al.  phylogeny of the chlorophyta: congruence between ultrastructural and molecular evidence , 1995 .

[108]  R. H. Benson,et al.  Magnetostratigraphic, biostratigraphic, and stable isotope stratigraphy of an Upper Miocene drill core from the Salé Briqueterie (northwestern Morocco): A high‐resolution chronology for the Messinian stage , 1994 .

[109]  L. Derry,et al.  δ13C of organic carbon in the Bengal Fan: Source evolution and transport of C3 and C4 plant carbon to marine sediments , 1994 .

[110]  A. B. Ronov Phanerozoic transgressions and regressions on the continents; a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition , 1994 .

[111]  R. Margalef Dynamic aspects of diversity , 1994 .

[112]  A. Knoll Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[113]  A. Gale,et al.  Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance , 1994, Geological Magazine.

[114]  B. Sageman,et al.  Marine Shales: Depositional Mechanisms and Environments of Ancient Deposits , 1994 .

[115]  R. Berner Paleozoic Atmospheric CO2: Importance of Solar Radiation and Plant Evolution , 1993, Science.

[116]  R. Bambach Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem , 1993, Paleobiology.

[117]  G. Ravizza Variations of the187Os/186Os ratio of seawater over the past 28 million years as inferred from metalliferous carbonates , 1993 .

[118]  M. Altabet,et al.  Nitrogen transport by vertically migrating diatom mats in the North Pacific Ocean , 1993, Nature.

[119]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[120]  L. Kump The Coupling of the Carbon and Sulfur Biogeochemical Cycles Over Phanerozoic Time , 1993 .

[121]  Jere H. Lipps,et al.  Fossil prokaryotes and protists , 1993 .

[122]  B. Runnegar,et al.  Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. , 1992, Science.

[123]  C. Boreham,et al.  Secular and environmental constraints on the occurrence of dinosterane in sediments , 1992 .

[124]  K. Caldeira Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate , 1992, Nature.

[125]  A. Knoll,et al.  The early evolution of eukaryotes: a geological perspective. , 1992, Science.

[126]  K. Banse Grazing, Temporal Changes of Phytoplankton Concentrations, and the Microbial Loop in the Open Sea , 1992 .

[127]  S. Mulholland,et al.  Phytolith systematics : emerging issues , 1992 .

[128]  M. Cheal Mammals , 1991, Experimental Gerontology.

[129]  James P. Grover,et al.  Resource Competition in a Variable Environment: Phytoplankton Growing According to the Variable-Internal-Stores Model , 1991, The American Naturalist.

[130]  R. Summons,et al.  Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments , 1990 .

[131]  R. Gersonde,et al.  Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea) Part 2: Resting spores, chrysophycean cysts, an endoskeletal dinoflagellate, and notes on the origin of diatoms , 1990 .

[132]  R. Gersonde,et al.  Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 1. Vegetative cells , 1990 .

[133]  B. Wilkinson,et al.  Sedimentary carbonate record of calcium-magnesium cycling , 1989 .

[134]  A. Knoll,et al.  Evolution and extinction in the marine realm: some constraints imposed by phytoplankton. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[135]  J. Grover Dynamics of Competition in a Variable Environment: Experiments with Two Diatom Species , 1988 .

[136]  P. J. Grantham,et al.  Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time , 1988 .

[137]  P. H. Roth Mesozoic calcareous nannofossil evolution: Relation to paleoceanographic events , 1987 .

[138]  F. Taylor An overview of the status of evolutionary cell symbiosis theories. , 1987, Annals of the New York Academy of Sciences.

[139]  B. Haq,et al.  Chronology of Fluctuating Sea Levels Since the Triassic , 1987, Science.

[140]  Zhang Zhongying Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China , 1986, Journal of Micropalaeontology.

[141]  R. Nance,et al.  Tectonic cycles and the history of the Earth's biogeochemical and paleoceanographic record , 1986 .

[142]  G. L. Johnson,et al.  A significant correlation between fluctuations in seafloor spreading rates and evolutionary pulsations , 1986 .

[143]  R. Fairbanks,et al.  Oligocene to Miocene Carbon Isotope Cycles and Abyssal Circulation Changes , 2013 .

[144]  Wallace S. Broecker,et al.  The Carbon cycle and atmospheric CO[2] : natural variations Archean to present , 1985 .

[145]  W. Dean,et al.  Models for the deposition of Mesozoic-Cenozoic fine-grained organic-carbon-rich sediment in the deep sea , 1984, Geological Society, London, Special Publications.

[146]  F. Bartoli The Biogeochemical Cycle of Silicon in Two Temperate Forest Ecosystems , 1983 .

[147]  D. Kamykowski Laboratory experiments on the diurnal vertical migration of marine dinoflagellates through temperature gradients , 1981 .

[148]  W. Hay,et al.  Global sedimentary mass balance and sea level changes , 1981 .

[149]  L. W. Alvarez,et al.  Extraterrestrial Cause for the Cretaceous-Tertiary Extinction , 1980, Science.

[150]  I. Morris Paths of Carbon Assimilation in Marine Phytoplankton , 1980 .

[151]  P. Scholle,et al.  Carbon Isotope Fluctuations in Cretaceous Pelagic Limestones: Potential Stratigraphic and Petroleum Exploration Tool , 1980 .

[152]  J. Bujak,et al.  Dinoflagellate diversity through time , 1979 .

[153]  R. Bambach,et al.  Species richness in marine benthic habitats through the Phanerozoic , 1977, Paleobiology.

[154]  D. Tilman Resource Competition between Plankton Algae: An Experimental and Theoretical Approach , 1977 .

[155]  P. Vail,et al.  Seismic stratigraphy and global changes of sea level, Part 4 : Global cycles of relative changes of sea level , 1977 .

[156]  D. Sibley,et al.  Chemical Mass Balance of the Earth's Crust: The Calcium Dilemma (?) and the Role of Pelagic Sediments , 1976, Science.

[157]  P. Sandberg New interpretations of Great Salt Lake ooids and of ancient non‐skeletal carbonate mineralogy , 1975 .

[158]  J. W. Valentine,et al.  Plate Tectonics and the History of Life in the Oceans , 1974 .

[159]  D. Bukry Discoaster evolutionary trends , 1971 .

[160]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[161]  J. Wilson,et al.  Did the Atlantic Close and then Re-Open? , 1966, Nature.

[162]  Karl Banse,et al.  On the vertical distribution of Zooplankton in the sea , 1964 .

[163]  A. Rothpletz Ueber die Flysch-Fucoiden und einige andere fossile Algen, sowie über liasische, Diatomeen führende Hornschwämme. , 1896 .

[164]  Y. Shinmei,et al.  Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean , 2022 .