Bayesian Learning of Generalized Gaussian Mixture Models on Biomedical Images

In the context of biomedical image processing and bioinformatics, an important problem is the development of accurate models for image segmentation and DNA spot detection. In this paper we propose a highly efficient unsupervised Bayesian algorithm for biomedical image segmentation and spot detection of cDNA microarray images, based on generalized Gaussian mixture models. Our work is motivated by the fact that biomedical and cDNA microarray images both contain non-Gaussian characteristics, impossible to model using rigid distributions like the Gaussian. Generalized Gaussian mixture models are robust in the presence of noise and outliers and are more flexible to adapt the shape of data.

[1]  Ming Hong Pi,et al.  Improve maximum likelihood estimation for subband GGD parameters , 2006, Pattern Recognit. Lett..

[2]  Sung-Bae Cho,et al.  Machine Learning in DNA Microarray Analysis for Cancer Classification , 2003, APBC.

[3]  A. Raftery,et al.  Estimating Bayes Factors via Posterior Simulation with the Laplace—Metropolis Estimator , 1997 .

[4]  Shu-Kai S. Fan,et al.  A fast estimation method for the generalized Gaussian mixture distribution on complex images , 2009, Comput. Vis. Image Underst..

[5]  Li Qin,et al.  An Improved Clustering-Based Approach for DNA Microarray Image Segmentation , 2004, ICIAR.

[6]  Mohamed S. Kamel,et al.  Image Analysis and Recognition , 2014, Lecture Notes in Computer Science.

[7]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[8]  David M. Rocke,et al.  A Model for Measurement Error for Gene Expression Arrays , 2001, J. Comput. Biol..

[9]  Christine D. Piatko,et al.  A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes , 1997, IEEE Trans. Vis. Comput. Graph..

[10]  M. Varanasi,et al.  Parametric generalized Gaussian density estimation , 1989 .

[11]  Jinglu Tan,et al.  Object density-based image segmentation and its applications in biomedical image analysis , 2009, Comput. Methods Programs Biomed..

[12]  Thrasyvoulos N. Pappas An adaptive clustering algorithm for image segmentation , 1992, IEEE Trans. Signal Process..

[13]  Asoke K. Nandi,et al.  Exponent parameter estimation for generalized Gaussian probability density functions with application to speech modeling , 2005, Signal Process..

[14]  G. Sagerer,et al.  Methods for automatic microarray image segmentation , 2003, IEEE Transactions on NanoBioscience.

[15]  Luciano Alparone,et al.  Estimation based on entropy matching for generalized Gaussian PDF modeling , 1999, IEEE Signal Processing Letters.

[16]  Sylvain Meignen,et al.  On the modeling of small sample distributions with generalized Gaussian density in a maximum likelihood framework , 2006, IEEE Transactions on Image Processing.

[17]  Benjamin Belzer,et al.  A comparison of the Z, E/sub 8/, and Leech lattices for quantization of low-shape-parameter generalized Gaussian sources , 1995, IEEE Signal Processing Letters.

[18]  L. Rueda,et al.  Spot Detection and Image Segmentation in DNA Microarray Data , 2005, Applied bioinformatics.

[19]  Yuichi Mori,et al.  Handbook of Computational Statistics , 2004 .

[20]  Nizar Bouguila,et al.  Practical Bayesian estimation of a finite beta mixture through gibbs sampling and its applications , 2006, Stat. Comput..

[21]  S. Dudoit,et al.  Microarray expression profiling identifies genes with altered expression in HDL-deficient mice. , 2000, Genome research.

[22]  Alberto Leon-Garcia,et al.  Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video , 1995, IEEE Trans. Circuits Syst. Video Technol..

[23]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[24]  Yuichi Mori,et al.  Handbook of computational statistics : concepts and methods , 2004 .

[25]  Adrian D. C. Chan,et al.  A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses , 2005, IEEE Transactions on Biomedical Engineering.

[26]  Hong Yan,et al.  Microarray Image Processing Based on Clustering and Morphological Analysis , 2003, APBC.

[27]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[28]  Nizar Bouguila,et al.  Finite Generalized Gaussian Mixture Modeling and Applications to Image and Video Foreground Segmentation , 2007, Fourth Canadian Conference on Computer and Robot Vision (CRV '07).