Fitting Free Form Surfaces

The problem of reconstructing smooth surfaces from discrete scattered data arises in many fields of science and engineering and has now been studied thoroughly for nearly 40 years. The data sources include measured values (meteorology, oceanography, optics, geodetics, geology, laser range scanning, etc.) as well as experimental results (from physical, chemical or engineering experiments) and computational values (evaluation of mathematical functions, finite element solutions of partial differential equations or results of other numerical simulations). Due to the vast variety of data sources many different methods have been developed, each of them more or less suited to a specific problem. In the field of geology, meteorology, cartography, a. o., the problem can typically be stated as follows: given data points (xi, yi, zi) ∈ IR, find a scalar function F : IR → IR that approximates or interpolates the value zi at (xi, yi), i.e. F (xi, yi) ≈ zi. This problem is generally known as Scattered Data Interpolation (cf. Figure 1) and there exist many solutions to that problem which include Shepard’s methods [42], radial basis functions [26] and finite element methods. Good surveys of these methods and further references can be found in [1, 17, 35, 40].

[1]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[2]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[3]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[4]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[5]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[6]  Vincent Anthony Mabert,et al.  Tutorial and Survey , 1972 .

[7]  L. Schumaker Fitting surfaces to scattered data , 1976 .

[8]  Robert E. Barnhill,et al.  Representation and Approximation of Surfaces , 1977 .

[9]  W. Klingenberg A course in differential geometry , 1978 .

[10]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[11]  C. Gauss,et al.  150 years after Gauss' Disquisitiones generales circa superficies curvas : with the original text of Gauss , 1979 .

[12]  Carl Friedrich Gauss Disquisitiones generales circa superficies curvas , 1981 .

[13]  Gene H. Golub,et al.  Matrix computations , 1983 .

[14]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[15]  Josef Hoschek,et al.  Intrinsic parametrization for approximation , 1988, Comput. Aided Geom. Des..

[16]  E. T. Y. Lee,et al.  Choosing nodes in parametric curve interpolation , 1989 .

[17]  Gregory M. Nielson,et al.  Knot selection for parametric spline interpolation , 1989 .

[18]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[19]  L. Schumaker,et al.  Data fitting by penalized least squares , 1990 .

[20]  Jean-Marc Vézien,et al.  Piecewise surface flattening for non-distorted texture mapping , 1991, SIGGRAPH.

[21]  Chia-Hsiang Menq,et al.  Parameter optimization in approximating curves and surfaces to measurement data , 1991, Comput. Aided Geom. Des..

[22]  George Celniker,et al.  Deformable curve and surface finite-elements for free-form shape design , 1991, SIGGRAPH.

[23]  Gregory M. Nielson,et al.  Scattered Data Interpolation and Applications: A Tutorial and Survey , 1991 .

[24]  Carlo H. Séquin,et al.  Functional optimization for fair surface design , 1992, SIGGRAPH.

[25]  Andrew P. Witkin,et al.  Variational surface modeling , 1992, SIGGRAPH.

[26]  Anne Verroust-Blondet,et al.  Interactive texture mapping , 1993, SIGGRAPH.

[27]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[28]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[29]  Gregory M. Nielson,et al.  Scattered data modeling , 1993, IEEE Computer Graphics and Applications.

[30]  Günther Greiner,et al.  Variational Design and Fairing of Spline Surfaces , 1994, Comput. Graph. Forum.

[31]  G. Greiner Surface construction based on variational principles , 1994 .

[32]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[33]  Weiyin Ma,et al.  Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces , 1995, Comput. Aided Des..

[34]  Malcolm I. G. Bloor,et al.  The smoothing properties of variational schemes for surface design , 1995, Comput. Aided Geom. Des..

[35]  David R. Forsey,et al.  Surface fitting with hierarchical splines , 1995, TOGS.

[36]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[37]  Larry L. Schumaker,et al.  Minimal energy surfaces using parametric splines , 1996, Comput. Aided Geom. Des..

[38]  Joachim Loos,et al.  Data Dependent Thin Plate Energy and its use in Interactive Surface Modeling , 1996, Comput. Graph. Forum.

[39]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[40]  Kai Hormann Glatte Approximation mit hierarchischen Splineflachen , 1997 .

[41]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..