Floodlight quantum key distribution: Demonstrating a framework for high-rate secure communication

Floodlight quantum key distribution (FL-QKD) is a radically different QKD paradigm that can achieve Gbit/s secret-key rates over metropolitan area distances without multiplexing [Phys. Rev. A 94, 012322 (2016)]. It is a two-way protocol that transmits many photons per bit duration and employs a high-gain optical amplifier, neither of which can be utilized by existing QKD protocols to mitigate channel loss. FL-QKD uses an optical bandwidth that is substantially larger than the modulation rate and performs decoding with a unique broadband homodyne receiver. Essential to FL-QKD is Alice's injection of photons from a photon-pair source--in addition to the light used for key generation--into the light she sends to Bob. This injection enables Alice and Bob to quantify Eve's intrusion and thus secure FL-QKD against collective attacks. Our proof-of-concept experiment included 10 dB propagation loss--equivalent to 50 km of low-loss fiber--and achieved a 55 Mbit/s secret-key rate (SKR) for a 100 Mbit/s modulation rate, as compared to the state-of-the-art system's 1 Mbit/s SKR for a 1 Gbit/s modulation rate [Opt. Express 21, 24550-24565 (2013)], representing ~500-fold and ~50-fold improvements in secret-key efficiency (SKE) (bits per channel use) and SKR (bits per second), respectively.

[1]  Rob Thew,et al.  Provably secure and practical quantum key distribution over 307 km of optical fibre , 2014, Nature Photonics.

[2]  Z. Yuan,et al.  Quantum key distribution over 122 km of standard telecom fiber , 2004, quant-ph/0412171.

[3]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[4]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[5]  Peng Huang,et al.  Continuous-variable quantum key distribution with 1 Mbps secure key rate. , 2015, Optics express.

[6]  Jeffrey H. Shapiro,et al.  Entanglement-based quantum communication secured by nonlocal dispersion cancellation , 2014, Physical Review A.

[7]  A. Tajima,et al.  High-Speed Quantum Key Distribution System for 1-Mbps Real-Time Key Generation , 2012, IEEE Journal of Quantum Electronics.

[8]  D. Englund,et al.  Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding , 2015 .

[9]  M. Nieto,et al.  COHERENT STATES AND THE NUMBER-PHASE UNCERTAINTY RELATION, , 1965 .

[10]  Zheshen Zhang,et al.  Entanglement's benefit survives an entanglement-breaking channel. , 2013, Physical review letters.

[11]  Stefano Pirandola,et al.  Two-way quantum cryptography at different wavelengths , 2013, 1309.7973.

[12]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[13]  Jeffrey H. Shapiro,et al.  Defeating Active Eavesdropping with Quantum Illumination , 2009, 0904.2490.

[14]  Seth Lloyd,et al.  Continuous Variable Quantum Cryptography using Two-Way Quantum Communication , 2006, ArXiv.

[15]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[16]  Dirk Englund,et al.  Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry. , 2013, Physical review letters.

[17]  Nicolas Gisin,et al.  Experimental realization of entangled qutrits for quantum communication , 2003, Quantum Inf. Comput..

[18]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[19]  A R Dixon,et al.  Efficient decoy-state quantum key distribution with quantified security. , 2013, Optics express.

[20]  Andrew G. Glen,et al.  APPL , 2001 .

[21]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[22]  Jeffrey H. Shapiro,et al.  Floodlight quantum key distribution: A practical route to gigabit-per-second secret-key rates , 2015, 1510.08737.

[23]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[24]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[25]  Sae Woo Nam,et al.  Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors , 2007, 0706.0397.

[26]  Andrew Thangaraj,et al.  Error-Control Coding for Physical-Layer Secrecy , 2015, Proceedings of the IEEE.

[27]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.

[28]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[29]  Mario Berta,et al.  Converse Bounds for Private Communication Over Quantum Channels , 2016, IEEE Transactions on Information Theory.

[30]  Jeffrey H. Shapiro,et al.  Secure communication via quantum illumination , 2013, Quantum Inf. Process..

[31]  Jeffrey H. Shapiro,et al.  High-dimensional quantum key distribution using dispersive optics , 2012, Physical Review A.

[32]  Seth Lloyd,et al.  Computable bounds for the discrimination of Gaussian states , 2008, 0806.1625.

[33]  Ian A Walmsley,et al.  Secure quantum key distribution using continuous variables of single photons. , 2007, Physical review letters.

[34]  A R Dixon,et al.  Continuous operation of high bit rate quantum key distribution , 2010, 1005.4573.