Finite polycrystalline elastoplasticity and damage: multiscale kinematics

Abstract A physically realistic macroscopic decomposition of the deformation gradient for metallic polycrystals should explicitly account for all relevant sub-macroscopic kinematic processes, including lattice deformation, plastic flow, and evolution of damage, that significantly contribute to the homogenized deformation at the macroscale. The present work suggests such a decomposition, based on principles of volume averaging and focusing upon elastoplasticity and a variety of damage modes including intergranular fracture, void growth and coalescence, and shear discontinuities. This decomposition, of hybrid additive–multiplicative form, captures precisely the kinematics of arbitrarily anisotropic damage and also offers insight into mesoscopic distributions of residual elastic lattice strain attributed to heterogeneity of local deformation occurring at both intergranular and intragranular scales.

[1]  H. Stumpf,et al.  The Application of Tensor Algebra on Manifolds to Nonlinear Continuum Mechanics — Invited Survey Article , 1997 .

[2]  John Arthur Simmons,et al.  FUNDAMENTAL ASPECTS OF DISLOCATION THEORY. VOLUME II. Conference Held at Gaithersburg, Maryland, April 21--25, 1969. , 1970 .

[3]  Arun R. Srinivasa,et al.  A dynamical theory of structures solids. I Basic developments , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[4]  C. Teodosiu,et al.  A finite theory of the elastoviscoplasticity of single crystals , 1976 .

[5]  H. Stumpf,et al.  On fibre bundle approach to a damage analysis , 1998 .

[6]  S. Nemat-Nasser,et al.  An algorithm for large-scale computational finite-deformation plasticity , 1994 .

[7]  S. Murakami,et al.  Notion of Continuum Damage Mechanics and its Application to Anisotropic Creep Damage Theory , 1983 .

[8]  R. Pęcherski,et al.  Macroscopic effects of micro-shear banding in plasticity of metals , 1998 .

[9]  S. Pantelides FIRST-PRINCIPLES MESOSCOPIC DYNAMICS IN HETEROGENEOUS MATERIALS , 1994 .

[10]  Rolf Mahnken,et al.  Theoretical, numerical and identification aspects of a new model class for ductile damage , 2002 .

[11]  L. Davison Kinematics of finite elastoplastic deformation , 1995 .

[12]  Alan Needleman,et al.  Material rate dependence and localized deformation in crystalline solids , 1983 .

[13]  H. Zbib On the mechanics of large inelastic deformations: kinematics and constitutive modeling , 1993 .

[14]  R. Hill,et al.  On macroscopic effects of heterogeneity in elastoplastic media at finite strain , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  Taehyo Park,et al.  Chapter 16 – The Kinematics of Damage for Finite-Strain Elasto-Plastic Solids , 1999 .

[16]  D. McDowell,et al.  Associative versus non-associative porous viscoplasticity based on internal state variable concepts , 1996 .

[17]  M. F. Ashby,et al.  Intergranular fracture during power-law creep under multiaxial stresses , 1980 .

[18]  David L. McDowell,et al.  A multiscale multiplicative decomposition for elastoplasticity of polycrystals , 2003 .

[19]  J. Mandel,et al.  Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques , 1973 .

[20]  David L. McDowell,et al.  Polycrystal constraint and grain subdivision , 1998 .

[21]  H. Zbib,et al.  Constitutive modeling of deformation and damage in superplastic materials , 2001 .

[22]  J. Saczuk Continua with microstructure modelled by the geometry of higher-order contact , 2001 .

[23]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[24]  Elias C. Aifantis,et al.  A damage model for ductile metals , 1989 .

[25]  E. H. Lee,et al.  Finite‐Strain Elastic—Plastic Theory with Application to Plane‐Wave Analysis , 1967 .

[26]  H. Stumpf,et al.  Nonlinear continuum theory of dislocations , 1996 .

[27]  E. H. Lee,et al.  Some comments on elastic-plastic analysis , 1981 .

[28]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[29]  Arun R. Srinivasa,et al.  Mechanics of the inelastic behavior of materials—part 1, theoretical underpinnings , 1998 .

[30]  T. Wright,et al.  A continuum framework for finite viscoplasticity , 2001 .

[31]  H. Stumpf,et al.  On a general concept for the analysis of crack growth and material damage , 2001 .

[32]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[33]  Li-jun Shen On the Decomposition of Deformation Into Elastic-Plastic Parts , 1998 .

[34]  Gérard A. Maugin,et al.  Eshelby stress in elastoplasticity and ductile fracture , 1994 .

[35]  M. F. Ashby,et al.  On creep fracture by void growth , 1982 .

[36]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .

[37]  Sia Nemat-Nasser,et al.  Decomposition of strain measures and their rates in finite deformation elastoplasticity , 1979 .

[38]  S. Murakami,et al.  Mechanical Modeling of Material Damage , 1988 .

[39]  M. Brünig Numerical analysis and elastic–plastic deformation behavior of anisotropically damaged solids , 2002 .

[40]  P. Perzyna,et al.  The localization of plastic deformation in thermoplastic solids , 1991 .

[41]  H. Rund The Differential Geometry of Finsler Spaces , 1959 .

[42]  F. Armero,et al.  An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids , 1996 .

[43]  R. Hill On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[44]  Mark Kachanov,et al.  Continuum Model of Medium with Cracks , 1980 .

[45]  H. Lippmann Averaging or distributing stress and strain , 1996 .

[46]  J. Kratochvíl,et al.  Finite‐Strain Theory of Crystalline Elastic‐Inelastic Materials , 1971 .

[47]  Sia Nemat-Nasser,et al.  Averaging theorems in finite deformation plasticity , 1999 .

[48]  Paul Steinmann,et al.  A framework for geometrically nonlinear continuum damage mechanics , 1998 .

[49]  E. Kröner Benefits and shortcomings of the continuous theory of dislocations , 2001 .

[50]  Taehyo Park,et al.  Kinematic Description of Damage , 1998 .

[51]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[52]  J. Rice Localization of plastic deformation , 1976 .

[53]  E. Kröner,et al.  Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen , 1959 .

[54]  Martin Ostoja-Starzewski,et al.  Random field models of heterogeneous materials , 1998 .

[55]  Min Zhou,et al.  Modelling of micromechanical fracture using a cohesive finite element method , 2001 .

[56]  H. Petryk Macroscopic rate-variables in solids undergoing phase transformation , 1998 .

[57]  P. Dawson,et al.  An analysis of texture and plastic spin for planar polycrystals , 1993 .

[58]  G. C. Johnson,et al.  On the kinematics of finite-deformation plasticity , 1987 .

[59]  M. Rashid,et al.  A constitutive algorithm for rate-dependent crystal plasticity , 1992 .

[60]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .