Phenomenological many-body potentials from the interstitial electron model. I: Dynamic properties of metals

Inspired by the ab initio generalized‐valence‐bond calculations of small metal clusters, we propose a phenomenological many‐body interaction model, the interstitial electron model (IEM), for interactions of ions and electrons in metals. In this model, the valence electrons are treated as classical particles situated at the crystal lattice interstitial positions. Simple pair potentials are used for ions and interstitial electrons, allowing the inhomogeneity and anisotropy of electron density distributions to be taken into account phenomenologically. To test the efficacy and applicability of this approach, the IEM is applied to lattice dynamics in fcc metals: Cu,Ni,Ag,Au, Pd, Pt, Al, Ca, Sr, and γ‐Fe. The phonon dispersion relations, densities of states, and Debye temperature are calculated and found to be in good agreement with experiments. Extension of the IEM to the construction of a new many‐body potential in metals and alloys is discussed.

[1]  Zarestky,et al.  Lattice dynamics of gamma -Fe. , 1987, Physical review. B, Condensed matter.

[2]  P. Brüesch,et al.  Phonons: Theory and Experiments III , 1982 .

[3]  W. B. Pearson,et al.  A handbook of lattice spacings and structures of metals and alloys , 1958 .

[4]  L. Beghian,et al.  INELASTIC SCATTERING OF NEUTRONS , 1954 .

[5]  D. Misemer,et al.  Lattice dynamics of fcc Ca , 1982 .

[6]  K. Fuchs A quantum mechanical calculation of the elastic constants of monovalent metals , 1936 .

[7]  H. G. Smith,et al.  Lattice Dynamics of Gold , 1973 .

[8]  Risto M. Nieminen,et al.  Many-Atom Interactions in Solids , 1990 .

[9]  R. Birgeneau,et al.  Normal Modes of Vibration in Nickel , 1964 .

[10]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[11]  R. Dovesi,et al.  Ab initio study of the Electron Momentum Distribution of metallic lithium , 1983 .

[12]  David J. Srolovitz,et al.  Atomistic Simulation of Materials , 1989 .

[13]  Li,et al.  Interstitial-electron model for lattice dynamics in fcc metals. , 1989, Physical review. B, Condensed matter.

[14]  K. Ho,et al.  Vibrational frequencies via total-energy calculations. Applications to transition metals , 1984 .

[15]  Walter A. Harrison,et al.  Electronic structure and the properties of solids , 1980 .

[16]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[17]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[18]  J. C. Upadhyaya,et al.  Many-body forces in the lattice dynamics of some FCC transition metals , 1988 .

[19]  A. A. Maradudin,et al.  Theory of lattice dynamics in the harmonic approximation , 1971 .

[20]  W. Kamitakahara,et al.  Crystal dynamics of silver , 1969 .

[21]  Anthony Paxton,et al.  ATOMISTIC SIMULATION OF MATERIALS : BEYOND PAIR POTENTIALS , 1989 .

[22]  Roberto Dovesi,et al.  Ab initio study of metallic beryllium , 1982 .

[23]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[24]  Goddard,et al.  New concepts of metallic bonding based on valence-bond ideas. , 1985, Physical review letters.

[25]  N. Hansen,et al.  Diffraction study of the electron density distribution in beryllium metal , 1984 .

[26]  J. Evers,et al.  Lattice dynamics of strontium and barium , 1984 .