A general Farkas lemma and characterization of optimality for a nonsmooth program involving convex processes
暂无分享,去创建一个
[1] C. Swartz. The Farkas lemma of Shimizu, Aiyoshi and Katayama , 1985, Bulletin of the Australian Mathematical Society.
[2] B. N. Pshenichnyi. Necessary Conditions for an Extremum , 1971 .
[3] J. Borwein,et al. Characterizations of optimality without constraint qualification for the abstract convex program , 1982 .
[4] Vaithilingam Jeyakumar,et al. Nonlinear alternative theorems and nondifferentiable programming , 1984, Z. Oper. Research.
[5] B. D. Craven,et al. Complete characterization of optimality for convex programming in banach spaces , 1980 .
[6] Frank H. Clarke,et al. A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..
[7] Olvi L. Mangasarian,et al. Nonlinear Programming , 1969 .
[8] A. Kruger. CONDITIONS FOR AN EXTREMUM , 1986 .
[9] C. Swartz,et al. A general Farkas lemma , 1985 .
[10] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[11] R. Holmes. Geometric Functional Analysis and Its Applications , 1975 .
[12] Bevil Milton Glover,et al. A generalized Farkas lemma with applications to quasidifferentiable programming , 1982, Z. Oper. Research.
[13] G. A. Garreau,et al. Mathematical Programming and Control Theory , 1979, Mathematical Gazette.
[14] R. Rockafellar. Conjugate Duality and Optimization , 1987 .
[15] Constantin Zălinescu,et al. A generalization of the Farkas lemma and applications to convex programming , 1978 .
[16] R. Mifflin. Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .
[17] Jonathan M. Borwein,et al. Adjoint Process Duality , 1983, Math. Oper. Res..