Implementing Arithmetic and Other Analytic Operations By Transcriptional Regulation

The transcriptional regulatory machinery of a gene can be viewed as a computational device, with transcription factor concentrations as inputs and expression level as the output. This view begs the question: what kinds of computations are possible? We show that different parameterizations of a simple chemical kinetic model of transcriptional regulation are able to approximate all four standard arithmetic operations: addition, subtraction, multiplication, and division, as well as various equality and inequality operations. This contrasts with other studies that emphasize logical or digital notions of computation in biological networks. We analyze the accuracy and precision of these approximations, showing that they depend on different sets of parameters, and are thus independently tunable. We demonstrate that networks of these “arithmetic” genes can be combined to accomplish yet more complicated computations by designing and simulating a network that detects statistically significant elevations in a time-varying signal. We also consider the much more general problem of approximating analytic functions, showing that this can be achieved by allowing multiple transcription factor binding sites on the promoter. These observations are important for the interpretation of naturally occurring networks and imply new possibilities for the design of synthetic networks.

[1]  P. Swain,et al.  Noisy information processing through transcriptional regulation , 2007, Proceedings of the National Academy of Sciences.

[2]  Hava T. Siegelmann,et al.  Computation in Gene Networks , 2001, MCU.

[3]  Claire J. Tomlin,et al.  Lateral Inhibition through Delta-Notch Signaling: A Piecewise Affine Hybrid Model , 2001, HSCC.

[4]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[5]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[6]  D. Schneider,et al.  Qualitative simulation of the carbon starvation response in Escherichia coli. , 2006, Bio Systems.

[7]  J. Ross,et al.  Computational functions in biochemical reaction networks. , 1994, Biophysical journal.

[8]  J. W. Bodnar Programming the Drosophila embryo. , 1997, Journal of theoretical biology.

[9]  C. Rao,et al.  Control, exploitation and tolerance of intracellular noise , 2002, Nature.

[10]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[11]  H. Sauro,et al.  Preliminary Studies on the In Silico Evolution of Biochemical Networks , 2004, Chembiochem : a European journal of chemical biology.

[12]  C. H. WADDINGTON,et al.  Towards a Theoretical Biology , 1968, Nature.

[13]  L. Glass Combinatorial and topological methods in nonlinear chemical kinetics , 1975 .

[14]  Pablo A. Iglesias,et al.  Optimal Noise Filtering in the Chemotactic Response of Escherichia coli , 2006, PLoS Comput. Biol..

[15]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Magnasco CHEMICAL KINETICS IS TURING UNIVERSAL , 1997 .

[17]  D. Thieffry,et al.  Segmenting the fly embryo: logical analysis of the role of the segment polarity cross-regulatory module. , 2008, The International journal of developmental biology.

[18]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[19]  D. Thieffry,et al.  A logical analysis of the Drosophila gap-gene system. , 2001, Journal of theoretical biology.

[20]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[21]  J. Ross,et al.  Chemical implementation and thermodynamics of collective neural networks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[22]  U Alon,et al.  The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. , 2006, Journal of molecular biology.

[23]  E. Davidson,et al.  Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. , 1998, Science.

[24]  A Hjelmfelt,et al.  Chemical implementation of neural networks and Turing machines. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[26]  Denis Thieffry,et al.  Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. , 2003, Journal of theoretical biology.

[27]  E. D. Weinberger,et al.  Chemical implementation of finite-state machines. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[28]  L. Glass,et al.  The logical analysis of continuous, non-linear biochemical control networks. , 1973, Journal of theoretical biology.

[29]  H. D. Jong,et al.  Qualitative simulation of the initiation of sporulation in Bacillus subtilis , 2004, Bulletin of mathematical biology.

[30]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[32]  D. Thieffry,et al.  Dynamical Analysis of the Regulatory Network Defining the Dorsal–Ventral Boundary of the Drosophila Wing Imaginal Disc , 2006, Genetics.

[33]  J. Helden,et al.  Establishement of the dorso-ventral pattern during embryonic development of drosophila melanogasater: a logical analysis , 1997, Journal of theoretical biology.

[34]  S. Leibler,et al.  Establishment of developmental precision and proportions in the early Drosophila embryo , 2002, Nature.

[35]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[36]  Herbert M. Sauro,et al.  The Computational Versatility of Proteomic Signaling Networks , 2004 .

[37]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[38]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Adam P. Arkin Self-Organized Biological Dynamics and Nonlinear Control: Signal processing by biochemical reaction networks , 2000 .

[40]  N. Blackstone,et al.  Molecular Biology of the Cell.Fourth Edition.ByBruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and, Peter Walter.New York: Garland Science.$102.00. xxxiv + 1463 p; ill.; glossary (G:1–G:36); index (I:1–I:49); tables (T:1). ISBN: 0–8153–3218–1. [CD‐ROM included.] 2002. , 2003 .

[41]  Jan Walleczek,et al.  Self-Organized Biological Dynamics and Nonlinear Control , 2006 .

[42]  E. Shapiro,et al.  Cellular abstractions: Cells as computation , 2002, Nature.

[43]  A. Varshavsky,et al.  In vivo half-life of a protein is a function of its amino-terminal residue. , 1986, Science.

[44]  E. O’Shea,et al.  Quantification of protein half-lives in the budding yeast proteome , 2006, Proceedings of the National Academy of Sciences.

[45]  B. Alberts,et al.  Molecular Biology of the Cell 4th edition , 2007 .

[46]  N. Barkai,et al.  Robustness of the BMP morphogen gradient in Drosophila embryonic patterning , 2022 .

[47]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[48]  Leon Glass,et al.  Reverse Engineering the Gap Gene Network of Drosophila melanogaster , 2006, PLoS Comput. Biol..

[49]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[50]  Ehud Shapiro,et al.  Cells as Computation , 2003, CMSB.

[51]  Aurélien Naldi,et al.  Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle , 2006, ISMB.

[52]  J. Ross,et al.  Signal Processing by Simple Chemical Systems , 2002 .

[53]  Denis Thieffry,et al.  Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis , 1999, Bioinform..

[54]  Nicolas E. Buchler,et al.  On schemes of combinatorial transcription logic , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  U. Alon,et al.  Plasticity of the cis-Regulatory Input Function of a Gene , 2006, PLoS biology.

[56]  M. Elowitz,et al.  Combinatorial Synthesis of Genetic Networks , 2002, Science.

[57]  E. Álvarez-Buylla,et al.  Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. , 1998, Journal of theoretical biology.

[58]  U. Alon,et al.  Detailed map of a cis-regulatory input function , 2003, Proceedings of the National Academy of Sciences of the United States of America.