Multi-Resolution Edge-aware Lighting Enhancement Network

[1]  Min Gan,et al.  Multiscale Low-Light Image Enhancement Network With Illumination Constraint , 2022, IEEE Transactions on Circuits and Systems for Video Technology.

[2]  Kuan-Hsien Liu,et al.  Half Wavelet Attention on M-Net+ for Low-Light Image Enhancement , 2022, 2022 IEEE International Conference on Image Processing (ICIP).

[3]  Bangshu Xiong,et al.  RetinexDIP: A Unified Deep Framework for Low-Light Image Enhancement , 2022, IEEE Transactions on Circuits and Systems for Video Technology.

[4]  Lap-Pui Chau,et al.  Low-Light Image Enhancement with Normalizing Flow , 2021, AAAI.

[5]  Xiaochun Cao,et al.  Ultra-High-Definition Image Dehazing via Multi-Guided Bilateral Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Chen Change Loy,et al.  Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Zhen Hua,et al.  Low-Light Image Enhancement via Progressive-Recursive Network , 2021, IEEE Transactions on Circuits and Systems for Video Technology.

[8]  Xiaojie Guo,et al.  Beyond Brightening Low-light Images , 2021, International Journal of Computer Vision.

[9]  Yicong Zhou,et al.  Zero-Shot Restoration of Underexposed Images via Robust Retinex Decomposition , 2020, 2020 IEEE International Conference on Multimedia and Expo (ICME).

[10]  Xi Peng,et al.  You Only Look Yourself: Unsupervised and Untrained Single Image Dehazing Neural Network , 2020, International Journal of Computer Vision.

[11]  Max Tegmark,et al.  Symbolic Pregression: Discovering Physical Laws from Raw Distorted Video , 2020, Physical review. E.

[12]  Shiqi Wang,et al.  Image Quality Assessment: Unifying Structure and Texture Similarity , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Wei Chen,et al.  EEMEFN: Low-Light Image Enhancement via Edge-Enhanced Multi-Exposure Fusion Network , 2020, AAAI.

[14]  Xiaodong Xie,et al.  FFA-Net: Feature Fusion Attention Network for Single Image Dehazing , 2019, AAAI.

[15]  Ying Shen,et al.  Zero-Shot Restoration of Back-lit Images Using Deep Internal Learning , 2019, ACM Multimedia.

[16]  Yanjun Ma,et al.  PaddlePaddle: An Open-Source Deep Learning Platform from Industrial Practice , 2019 .

[17]  Ding Liu,et al.  EnlightenGAN: Deep Light Enhancement Without Paired Supervision , 2019, IEEE Transactions on Image Processing.

[18]  Xiaojie Guo,et al.  Kindling the Darkness: A Practical Low-light Image Enhancer , 2019, ACM Multimedia.

[19]  Gang Hua,et al.  Gated Context Aggregation Network for Image Dehazing and Deraining , 2018, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[20]  Xindong Wu,et al.  Object Detection With Deep Learning: A Review , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[21]  Radu Timofte,et al.  I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images , 2018, ACIVS.

[22]  Fatih Murat Porikli,et al.  LightenNet: A Convolutional Neural Network for weakly illuminated image enhancement , 2018, Pattern Recognit. Lett..

[23]  Li Tao,et al.  LLCNN: A convolutional neural network for low-light image enhancement , 2017, 2017 IEEE Visual Communications and Image Processing (VCIP).

[24]  Peyman Milanfar,et al.  NIMA: Neural Image Assessment , 2017, IEEE Transactions on Image Processing.

[25]  Alex Kendall,et al.  What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? , 2017, NIPS.

[26]  Yu Li,et al.  LIME: Low-Light Image Enhancement via Illumination Map Estimation , 2017, IEEE Transactions on Image Processing.

[27]  Nagiza F. Samatova,et al.  Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data , 2016, IEEE Transactions on Knowledge and Data Engineering.

[28]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[29]  Dacheng Tao,et al.  DehazeNet: An End-to-End System for Single Image Haze Removal , 2016, IEEE Transactions on Image Processing.

[30]  Soumik Sarkar,et al.  LLNet: A deep autoencoder approach to natural low-light image enhancement , 2015, Pattern Recognit..

[31]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[32]  Chul Lee,et al.  Contrast Enhancement Based on Layered Difference Representation of 2D Histograms , 2013, IEEE Transactions on Image Processing.

[33]  Shih-Chia Huang,et al.  Efficient Contrast Enhancement Using Adaptive Gamma Correction With Weighting Distribution , 2013, IEEE Transactions on Image Processing.

[34]  Alan C. Bovik,et al.  Making a “Completely Blind” Image Quality Analyzer , 2013, IEEE Signal Processing Letters.

[35]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[36]  S. Parthasarathy,et al.  An automated multi Scale Retinex with Color Restoration for image enhancement , 2012, 2012 National Conference on Communications (NCC).

[37]  David R. Bull,et al.  Automatic contrast enhancement of low-light images based on local statistics of wavelet coefficients , 2010, 2010 IEEE International Conference on Image Processing.

[38]  A. Yezzi,et al.  Local or Global Minima: Flexible Dual-Front Active Contours , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[40]  H. D. Cheng,et al.  A simple and effective histogram equalization approach to image enhancement , 2004, Digit. Signal Process..

[41]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[42]  Zia-ur Rahman,et al.  Properties and performance of a center/surround retinex , 1997, IEEE Trans. Image Process..

[43]  Kun Lu,et al.  TBEFN: A Two-Branch Exposure-Fusion Network for Low-Light Image Enhancement , 2021, IEEE Transactions on Multimedia.

[44]  Wonjun Kim,et al.  DSLR: Deep Stacked Laplacian Restorer for Low-Light Image Enhancement , 2021, IEEE Transactions on Multimedia.

[45]  Jianhua Wu,et al.  MBLLEN: Low-Light Image/Video Enhancement Using CNNs , 2018, BMVC.