A ug 2 01 0 Approaching optimality for solving SDD linear systems ∗

We present an algorithm that on input of an $n$-vertex $m$-edge weighted graph $G$ and a value $k$ produces an incremental sparsifier $\hat{G}$ with $n-1 + m/k$ edges, such that the relative condition number of $G$ with $\hat{G}$ is bounded above by $\tilde{O}(k\log^2 n)$, with probability $1-p$ (we use the $\tilde{O}()$ notation to hide a factor of at most $(\log\log n)^4$). The algorithm runs in time $\tilde{O}((m \log{n} + n\log^2{n})\log(1/p)).$ As a result, we obtain an algorithm that on input of an $n\times n$ symmetric diagonally dominant matrix $A$ with $m$ nonzero entries and a vector $b$ computes a vector ${x}$ satisfying $||{x}-A^{+}b||_A<\epsilon ||A^{+}b||_A $, in expected time $\tilde{O}(m\log^2{n}\log(1/\epsilon)).$ The solver is based on repeated applications of the incremental sparsifier that produces a chain of graphs which is then used as input to the recursive preconditioned Chebyshev iteration.

[1]  David R. Karger,et al.  Approximating s – t Minimum Cuts in ~ O(n 2 ) Time , 2007 .

[2]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[3]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[4]  Gary L. Miller,et al.  Approaching optimality for solving SDD systems , 2010, ArXiv.

[5]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[6]  O. Axelsson Iterative solution methods , 1995 .

[7]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[8]  Daniel A. Spielman,et al.  Faster approximate lossy generalized flow via interior point algorithms , 2008, STOC.

[9]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for a Special Case of Disjoint Set Union , 1985, J. Comput. Syst. Sci..

[10]  Gary L. Miller,et al.  A linear work, O(n1/6) time, parallel algorithm for solving planar Laplacians , 2007, SODA '07.

[11]  Nikhil Srivastava,et al.  Twice-ramanujan sparsifiers , 2008, STOC '09.

[12]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[13]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[14]  Noga Alon,et al.  Solving Linear Systems through Nested Dissection , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[15]  Shang-Hua Teng,et al.  Solving sparse, symmetric, diagonally-dominant linear systems in time O(m/sup 1.31/ , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[16]  Shang-Hua Teng,et al.  The Laplacian Paradigm: Emerging Algorithms for Massive Graphs , 2010, TAMC.

[17]  Anil Joshi Topics in optimization and sparse linear systems , 1997 .

[18]  Robert E. Tarjan,et al.  Applications of Path Compression on Balanced Trees , 1979, JACM.

[19]  Gary L. Miller,et al.  Graph partitioning into isolated, high conductance clusters: theory, computation and applications to preconditioning , 2008, SPAA '08.

[20]  P. Rowlinson ALGEBRAIC GRAPH THEORY (Graduate Texts in Mathematics 207) By CHRIS GODSIL and GORDON ROYLE: 439 pp., £30.50, ISBN 0-387-95220-9 (Springer, New York, 2001). , 2002 .

[21]  Aleksander Madry,et al.  Faster Generation of Random Spanning Trees , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[22]  Amin Saberi,et al.  Subgraph sparsification and nearly optimal ultrasparsifiers , 2009, STOC '10.

[23]  Shang-Hua Teng,et al.  Lower-stretch spanning trees , 2004, STOC '05.

[24]  Gary L. Miller,et al.  Performance evaluation of a new parallel preconditioner , 1995, Proceedings of 9th International Parallel Processing Symposium.

[25]  Shang-Hua Teng,et al.  Nearly-Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems , 2006, SIAM J. Matrix Anal. Appl..

[26]  Sivan Toledo,et al.  Support-Graph Preconditioners , 2005, SIAM J. Matrix Anal. Appl..

[27]  D. Spielman Algorithms, Graph Theory, and Linear Equations in Laplacian Matrices , 2011 .

[28]  Noga Alon,et al.  A Graph-Theoretic Game and Its Application to the k-Server Problem , 1995, SIAM J. Comput..

[29]  D. Spielman,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[30]  Ittai Abraham,et al.  Nearly Tight Low Stretch Spanning Trees , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[31]  Bruce Hendrickson,et al.  Solving Elliptic Finite Element Systems in Near-Linear Time with Support Preconditioners , 2004, SIAM J. Numer. Anal..

[32]  Nikhil Srivastava,et al.  Graph Sparsification by Effective Resistances , 2011, SIAM J. Comput..

[33]  D. Rose,et al.  Generalized nested dissection , 1977 .

[34]  Gary L. Miller,et al.  Combinatorial preconditioners and multilevel solvers for problems in computer vision and image processing , 2011, Comput. Vis. Image Underst..

[35]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[36]  Nancy S. Pollard,et al.  Real-time gradient-domain painting , 2008, ACM Trans. Graph..

[37]  F. Chung Spectral Graph Theory, Regional Conference Series in Math. , 1997 .

[38]  Bruce Hendrickson,et al.  Support Theory for Preconditioning , 2003, SIAM J. Matrix Anal. Appl..

[39]  Debmalya Panigrahi,et al.  A general framework for graph sparsification , 2010, STOC '11.