Numerical Study on Laminar Burning Velocity and Flame Stability of Premixed Methane/Ethylene/Air Flames

[1]  W. Cen,et al.  Ethylene Polymerization Using Improved Polyethylene Catalyst , 2011 .

[2]  A. Konnov The effect of temperature on the adiabatic laminar burning velocities of CH4-air and H-2-air flames , 2010 .

[3]  Wei Liu,et al.  Flame propagation and counterflow nonpremixed ignition of mixtures of methane and ethylene , 2010 .

[4]  C. Wen Effects of CO Addition on the Lean Premixed CH_4/Air Flame , 2010 .

[5]  Jianjun Zheng,et al.  Numerical study on laminar burning velocity and NO formation of premixed methane-hydrogen-air flames , 2009 .

[6]  Haiyan Miao,et al.  Experimental and numerical study on lean premixed methane-hydrogen-air flames at elevated pressures and temperatures , 2009 .

[7]  Suk Ho Chung,et al.  Improvement of flame stability and NOx reduction in hydrogen-added ultra lean premixed combustion , 2009 .

[8]  Zuo-hua Huang,et al.  Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames , 2009 .

[9]  Y. Chao,et al.  Effects of CO addition on the characteristics of laminar premixed CH4/air opposed-jet flames , 2009 .

[10]  Bao-wei Wang,et al.  Conversion of Methane by Steam Reforming Using Dielectric-barrier Discharge , 2009 .

[11]  C. Law,et al.  Experimental and modeling study of laminar flame speed and non-premixed counterflow ignition of n-heptane , 2009 .

[12]  S. Ishizuka,et al.  Hydrogen addition effect on laminar burning velocity, flame temperature and flame stability of a planar and a curved CH4–H2–air premixed flame , 2009 .

[13]  P. Santoni,et al.  Reduced mechanism for the combustion of evolved gases in forest fires , 2008 .

[14]  C. C. Liu,et al.  Effects of H2 or CO2 addition, equivalence ratio, and turbulent straining on turbulent burning velocities for lean premixed methane combustion , 2008 .

[15]  A. Konnov,et al.  The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4 + H2 + O2 + N2 , 2007 .

[16]  J. Biet,et al.  Experimental and numerical study of premixed, lean ethylene flames , 2007 .

[17]  Ö. Gülder,et al.  The effect of reformate gas enrichment on extinction limits and NOX formation in counterflow CH4/air premixed flames , 2007 .

[18]  P. Henshaw,et al.  PREMIXED AMMONIA-METHANE-AIR COMBUSTION , 2005 .

[19]  S. Davis,et al.  Markstein numbers in counterflow, methane- and propane- air flames: a computational study , 2002 .

[20]  S. Davis,et al.  Determination of Markstein numbers in counterflow premixed flames , 2002 .

[21]  T. Tsotsis,et al.  NO x emission control of lean methane-air combustion with addition of methane reforming products , 2002 .

[22]  J. Andrae,et al.  Numerical studies of wall effects with laminar methane flames , 2002 .

[23]  T. Tsotsis,et al.  Strain-rate effects on hydrogen-enhanced lean premixed combustion , 2001 .

[24]  P. R. Westmoreland,et al.  MBMS analysis of a fuel-lean ethylene flame , 1998 .

[25]  Robert J. Kee,et al.  PREMIX :A F ORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames , 1998 .

[26]  Andrew E. Lutz,et al.  OPPDIF: A Fortran program for computing opposed-flow diffusion flames , 1997 .

[27]  Forman A. Williams,et al.  The asymptotic structure of stoichiometric methaneair flames , 1987 .

[28]  Chung King Law,et al.  Laminar flame speeds of hydrocarbon + air mixtures with hydrogen addition☆ , 1986 .