Parameterized Analogues of Probabilistic Computation

We study structural aspects of randomized parameterized computation. We introduce a new class W[P]−PFPT as a natural parameterized analogue of PP. Our definition uses the machine based characterization of the parameterized complexity class W[P] obtained by Chen et.al [TCS 2005]. We translate most of the structural properties and characterizations of the class PP to the new class W[P]−PFPT.

[1]  L. Fortnow Counting complexity , 1998 .

[2]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[3]  Moritz Müller Parameterized Derandomization , 2008, IWPEC.

[4]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[5]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[6]  Markus Bläser,et al.  Weighted Counting of k-Matchings Is #W[1]-Hard , 2012, IPEC.

[7]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[8]  Peter Bro Miltersen,et al.  2 The Task of a Numerical Analyst , 2022 .

[9]  Juha Kontinen A logical characterization of the counting hierarchy , 2009, TOCL.

[10]  Yijia Chen,et al.  Machine-based methods in parameterized complexity theory , 2005, Theor. Comput. Sci..

[11]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[12]  Rolf Niedermeier,et al.  INTRODUCTION TO FIXED-PARAMETER ALGORITHMS , 2006 .

[13]  Ilya Volkovich,et al.  Improved Polynomial Identity Testing for Read-Once Formulas , 2009, APPROX-RANDOM.

[14]  Dániel Marx,et al.  Complexity of Counting Subgraphs: Only the Boundedness of the Vertex-Cover Number Counts , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[15]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[16]  Radu Curticapean,et al.  Counting Matchings of Size k Is W[1]-Hard , 2013, ICALP.

[17]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[18]  Michael R. Fellows,et al.  Fixed-parameter intractability , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[19]  Eric Allender,et al.  Counting Hierarchies: Polynomial Time and Constant , 1990, Bull. EATCS.

[20]  D. Du,et al.  Theory of Computational Complexity: Du/Theory , 2000 .

[21]  D. Du,et al.  Theory of Computational Complexity , 2000 .

[22]  Neeraj Kayal,et al.  A super-polynomial lower bound for regular arithmetic formulas , 2014, STOC.

[23]  Michael R. Fellows,et al.  Parameterized Circuit Complexity and the W Hierarchy , 1998, Theor. Comput. Sci..

[24]  Oleg Golberg Combinatorial Nullstellensatz , 2007 .