Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders

We apply the lattice Boltzmann equation (LBE) with multiple-relaxation-time (MRT) collision model to simulate laminar flows in two-dimensions (2D). In order to simulate flows in an unbounded domain with the LBE method, we need to address two issues: stretched non-uniform mesh and inflow and outflow boundary conditions. We use the interpolated grid stretching method to address the need of non-uniform mesh. We demonstrate that various inflow and outflow boundary conditions can be easily and consistently realized with the MRT-LBE. The MRT-LBE with non-uniform stretched grids is first validated with a number of test cases: the Poiseuille flow, the flow past a cylinder asymmetrically placed in a channel, and the flow past a cylinder in an unbounded domain. We use the LBE method to simulate the flow past two tandem cylinders in an unbounded domain with Re=100. Our results agree well with existing ones. Through this work we demonstrate the effectiveness of the MRT-LBE method with grid stretching.

[1]  Xiaoyi He,et al.  Lattice Boltzmann method on a curvilinear coordinate system: Vortex shedding behind a circular cylinder , 1997 .

[2]  Skordos,et al.  Initial and boundary conditions for the lattice Boltzmann method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  D. d'Humières,et al.  Lattice Boltzmann equation on a two-dimensional rectangular grid , 2001 .

[4]  F. Lien,et al.  Numerical predictions of low Reynolds number flows over two tandem circular cylinders , 2005 .

[5]  Thomas F. Brooks,et al.  Tandem Cylinder Noise Predictions , 2007 .

[6]  P. Lallemand,et al.  Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Wei Shyy,et al.  Force evaluation in the lattice Boltzmann method involving curved geometry. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Li-Shi Luo,et al.  Some progress in the lattice Boltzmann method: Reynolds number enhancement in simulations , 1997 .

[9]  Wen-An Yong,et al.  Rigorous Navier–Stokes limit of the lattice Boltzmann equation , 2003 .

[10]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[11]  Li-Shi Luo,et al.  Some Progress in Lattice Boltzmann Method. Part I. Nonuniform Mesh Grids , 1996 .

[12]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[13]  Li-Shi Luo Comment on "Discrete Boltzmann equation for microfluidics". , 2004, Physical review letters.

[14]  W. Shyy,et al.  Viscous flow computations with the method of lattice Boltzmann equation , 2003 .

[15]  Li-Shi Luo,et al.  Simulation of flow past a rotating circular cylinder near a plane wall , 2006 .

[16]  M. J. Pattison,et al.  Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[18]  Meelan Choudhari,et al.  Measurements of Unsteady Wake Interference Between Tandem Cylinders , 2006, 36th AIAA Fluid Dynamics Conference and Exhibit.

[19]  J. Ferrari,et al.  NUMERICAL SIMULATION OF FLOW INTERFERENCE BETWEEN TWO CIRCULAR CYLINDERS IN TANDEM AND SIDE-BY-SIDE ARRANGEMENTS , 2001 .

[20]  M. Krafczyk,et al.  An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations , 2006 .

[21]  Takaji Inamuro,et al.  A NON-SLIP BOUNDARY CONDITION FOR LATTICE BOLTZMANN SIMULATIONS , 1995, comp-gas/9508002.

[22]  Sanjay Mittal,et al.  Effect of blockage on critical parameters for flow past a circular cylinder , 2006 .

[23]  P. Lallemand,et al.  Momentum transfer of a Boltzmann-lattice fluid with boundaries , 2001 .

[24]  D. d'Humières,et al.  Local second-order boundary methods for lattice Boltzmann models , 1996 .

[25]  Yan Peng,et al.  A comparative study of immersed-boundary and interpolated bounce-back methods in LBE , 2008 .

[26]  Jiro Mizushima,et al.  Instability and transition of flow past two tandem circular cylinders , 2005 .

[27]  D. Tritton,et al.  Physical Fluid Dynamics , 1977 .

[28]  D. d'Humières,et al.  Thirteen-velocity three-dimensional lattice Boltzmann model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Xiaoyi He,et al.  Lattice Boltzmann Method on Curvilinear Coordinates System , 1997 .

[30]  P. Lallemand,et al.  Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Zhaoxia Yang,et al.  Analysis of lattice Boltzmann boundary conditions , 2003 .

[32]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[33]  M. Junk,et al.  Asymptotic analysis of the lattice Boltzmann equation , 2005 .

[34]  Dominique d'Humières,et al.  Multireflection boundary conditions for lattice Boltzmann models. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Ernst Rank,et al.  a Lb-Based Approach for Adaptive Flow Simulations , 2003 .

[36]  V. Babu,et al.  Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method , 2006 .

[37]  F. Wubs Notes on numerical fluid mechanics , 1985 .

[38]  S. Turek,et al.  Benchmark computations based on Lattice-Boltzmann, Finite Element and Finite Volume Methods for laminar Flows , 2006 .

[39]  Baoming Li,et al.  Discrete Boltzmann equation for microfluidics. , 2003, Physical review letters.

[40]  L. Luo,et al.  Characteristics of two-dimensional flow around a rotating circular cylinder near a plane wall , 2007 .

[41]  Pierre Lallemand,et al.  Consistent initial conditions for lattice Boltzmann simulations , 2006 .

[42]  Robert S. Bernard,et al.  Boundary conditions for the lattice Boltzmann method , 1996 .

[43]  J. Li,et al.  Numerical study of Laminar flow past one and two circular cylinders , 1991 .

[44]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[45]  M. M. Zdravkovich,et al.  Flow around circular cylinders : a comprehensive guide through flow phenomena, experiments, applications, mathematical models, and computer simulations , 1997 .

[46]  O. Filippova,et al.  Grid Refinement for Lattice-BGK Models , 1998 .

[47]  Cass T. Miller,et al.  An evaluation of lattice Boltzmann schemes for porous medium flow simulation , 2006 .

[48]  D. Martínez,et al.  On boundary conditions in lattice Boltzmann methods , 1996 .

[49]  P. Adler,et al.  Boundary flow condition analysis for the three-dimensional lattice Boltzmann model , 1994 .

[50]  Sanjay Mittal,et al.  Unsteady incompressible flows past two cylinders in tandem and staggered arrangements , 1997 .

[51]  L. Luo,et al.  Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation , 1997 .

[52]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[53]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[54]  S. Mittal,et al.  Incompressible flow past a circular cylinder: dependence of the computed flow field on the location of the lateral boundaries , 1995 .

[55]  Q. Zou,et al.  On pressure and velocity boundary conditions for the lattice Boltzmann BGK model , 1995, comp-gas/9611001.