Cocoon Silk: From Mesoscopic Materials Design to Engineering Principles and Applications

[1]  R. Mezzenga,et al.  Directed Growth of Silk Nanofibrils on Graphene and Their Hybrid Nanocomposites. , 2014, ACS macro letters.

[2]  J. Abrahams,et al.  The hairpin conformation of the amyloid β peptide is an important structural motif along the aggregation pathway , 2014, JBIC Journal of Biological Inorganic Chemistry.

[3]  S. Fossey,et al.  Investigation of the nanofibrils of silk fibers , 2000 .

[4]  Michele Vendruscolo,et al.  Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils , 2007, Science.

[5]  Z. Shao,et al.  The natural silk spinning process , 2001 .

[6]  Z. Yang,et al.  Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. , 2015, Small.

[7]  M. Han,et al.  Intrinsically Colored and Luminescent Silk , 2011, Advanced materials.

[8]  Rui L Reis,et al.  Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. , 2013, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[9]  Thomas Scheibel,et al.  A conserved spider silk domain acts as a molecular switch that controls fibre assembly , 2010, Nature.

[10]  Y. Termonia Molecular modeling of spider silk elasticity , 1994 .

[11]  J. V. van Esch,et al.  Programing Performance of Silk Fibroin Materials by Controlled Nucleation , 2016 .

[12]  Xungai Wang,et al.  Comparative Study of Strain-Dependent Structural Changes of Silkworm Silks: Insight into the Structural Origin of Strain-Stiffening. , 2017, Small.

[13]  Z. Shao,et al.  Preparation and characterization of transparent silk fibroin/cellulose blend films , 2013 .

[14]  David L. Kaplan,et al.  Mechanism of silk processing in insects and spiders , 2003, Nature.

[15]  Xin Chen,et al.  Mass spider silk production through targeted gene replacement in Bombyx mori , 2018, Proceedings of the National Academy of Sciences.

[16]  M. Zourob,et al.  A Micropatterned Hydrogel Platform for Chemical Synthesis and Biological Analysis , 2006 .

[17]  Mingzhong Li,et al.  Cationized Bombyx mori silk fibroin as a delivery carrier of the VEGF165-Ang-1 coexpression plasmid for dermal tissue regeneration. , 2019, Journal of materials chemistry. B.

[18]  M. Chance,et al.  Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. , 2001, Biophysical chemistry.

[19]  G. Vecchio,et al.  CD and small‐angle x‐ray scattering of silk fibroin in solution , 1989, Biopolymers.

[20]  M. Jacquet,et al.  Silk fibroin: Structural implications of a remarkable amino acid sequence , 2001, Proteins.

[21]  Z. Shao,et al.  Doxorubicin‐Loaded Magnetic Silk Fibroin Nanoparticles for Targeted Therapy of Multidrug‐Resistant Cancer , 2014, Advanced materials.

[22]  Thierry Lefèvre,et al.  Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy. , 2004, Biomacromolecules.

[23]  Naibo Lin,et al.  Interplay between Light and Functionalized Silk Fibroin and Applications , 2020, iScience.

[24]  Ke-Qin Zhang,et al.  In situ observation of colloidal monolayer nucleation driven by an alternating electric field , 2004, Nature.

[25]  Bowen Zhu,et al.  Silk Fibroin for Flexible Electronic Devices , 2016, Advanced materials.

[26]  Daiwen Yang,et al.  “Nano‐Fishnet” Structure Making Silk Fibers Tougher , 2016 .

[27]  R. Pachter,et al.  X-ray diffraction and computational studies of the modulus of silk (Bombyx mori) , 2002 .

[28]  A. Oberhauser,et al.  Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. , 2000, Progress in biophysics and molecular biology.

[29]  Fritz Vollrath,et al.  Materials: Surprising strength of silkworm silk , 2002, Nature.

[30]  N. Pugno The “Egg of Columbus” for Making the World's Toughest Fibres , 2013, PloS one.

[31]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[32]  David L Kaplan,et al.  Ingrowth of human mesenchymal stem cells into porous silk particle reinforced silk composite scaffolds: An in vitro study. , 2011, Acta biomaterialia.

[33]  Xiang‐Yang Liu Gelation with Small Molecules: from Formation Mechanism to NanostructureArchitecture. , 2005, Topics in current chemistry.

[34]  S. Licoccia,et al.  Rough fibrils provide a toughening mechanism in biological fibers. , 2012, ACS nano.

[35]  Xiang‐Yang Liu Generic mechanism of heterogeneous nucleation and molecular interfacial effects , 2001 .

[36]  H. Scheraga,et al.  Conformational energy studies of β‐sheets of model silk fibroin peptides. I. Sheets of poly(Ala‐Gly) chains , 1991 .

[37]  L. Meinel,et al.  Silk fibroin layer-by-layer microcapsules for localized gene delivery. , 2014, Biomaterials.

[38]  D. Kaplan,et al.  Synthesis of Silk Fibroin Micro‐ and Submicron Spheres Using a Co‐Flow Capillary Device , 2014, Advanced materials.

[39]  F. Vollrath,et al.  Structural organization of spider silk , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[40]  Qi Wang,et al.  Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers. , 2016, Nano letters.

[41]  Hu Tao,et al.  Silk Materials – A Road to Sustainable High Technology , 2012, Advanced materials.

[42]  Y. Diao,et al.  Controlled Colloidal Assembly: Experimental Modeling of General Crystallization and Biomimicking of Structural Color , 2012 .

[43]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[44]  Lawrence F. Drummy,et al.  Correlation of the β-sheet crystal size in silk fibers with the protein amino acid sequence. , 2007, Soft matter.

[45]  Yang Li,et al.  Structural Origin of the Strain‐Hardening of Spider Silk , 2011 .

[46]  Jianjun Zhang,et al.  Direct in Vivo Functionalizing Silkworm Fibroin via Molecular Recognition. , 2015, ACS biomaterials science & engineering.

[47]  Daiwen Yang,et al.  Solution structure of eggcase silk protein and its implications for silk fiber formation , 2009, Proceedings of the National Academy of Sciences.

[48]  Yaopeng Zhang,et al.  Significantly reinforced composite fibers electrospun from silk fibroin/carbon nanotube aqueous solutions. , 2012, Biomacromolecules.

[49]  Randolph V Lewis,et al.  Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties , 2012, Proceedings of the National Academy of Sciences.

[50]  X. Liu,et al.  Hierarchical Structure of Silk Materials Versus Mechanical Performance and Mesoscopic Engineering Principles. , 2019, Small.

[51]  Kenichi Nakajima,et al.  Colored Fluorescent Silk Made by Transgenic Silkworms , 2013 .

[52]  F. Vollrath,et al.  Structural conformation of spidroin in solution: a synchrotron radiation circular dichroism study. , 2004, Biomacromolecules.

[53]  Thierry Lefèvre,et al.  Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. , 2007, Biophysical journal.

[54]  Y. Takahashi,et al.  Structure refinement and diffuse streak scattering of silk (Bombyx mori). , 1999, International journal of biological macromolecules.

[55]  Z. Shao,et al.  Two distinct beta-sheet fibrils from silk protein. , 2009, Chemical communications.

[56]  T. Asakura,et al.  Characterization by Raman microspectroscopy of the strain-induced conformational transition in fibroin fibers from the silkworm Samia cynthia ricini. , 2006, Biomacromolecules.

[57]  Xiaobing Yan,et al.  Silk Flexible Electronics: From Bombyx mori Silk Ag Nanoclusters Hybrid Materials to Mesoscopic Memristors and Synaptic Emulators , 2019, Advanced Functional Materials.

[58]  S. Hudson,et al.  Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. , 2005, Biomacromolecules.

[59]  Weidong Yu,et al.  Programing Performance of Wool Keratin and Silk Fibroin Composite Materials by Mesoscopic Molecular Network Reconstruction , 2016 .

[60]  Hideki Sezutsu,et al.  High-Toughness Silk Produced by a Transgenic Silkworm Expressing Spider (Araneus ventricosus) Dragline Silk Protein , 2014, PloS one.

[61]  A. Nagy,et al.  Mechanical manipulation of Alzheimer’s amyloid β1–42 fibrils , 2006 .

[62]  Jianhui Zhao,et al.  Mesoscopic-Functionalization of Silk Fibroin with Gold Nanoclusters Mediated by Keratin and Bioinspired Silk Synapse. , 2017, Small.

[63]  Xiang‐Yang Liu,et al.  Unraveled mechanism in silk engineering: Fast reeling induced silk toughening , 2009 .

[64]  Mischa Zelzer,et al.  Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. , 2010, Chemical Society reviews.

[65]  Yuan Cheng,et al.  Structures, mechanical properties and applications of silk fibroin materials , 2015 .

[66]  Z. Shao,et al.  Optical spectroscopy to investigate the structure of regenerated Bombyx mori silk fibroin in solution. , 2004, Biomacromolecules.

[67]  David L. Kaplan,et al.  New Opportunities for an Ancient Material , 2010, Science.

[68]  Lian Li,et al.  Design of superior spider silk: from nanostructure to mechanical properties. , 2006, Biophysical journal.

[69]  J. Rodríguez‐Cabello,et al.  Recombinant Technology in the Development of Materials and Systems for Soft‐Tissue Repair , 2015, Advanced healthcare materials.

[70]  T. Lefèvre,et al.  Orientation-Insensitive Spectra for Raman Microspectroscopy , 2006, Applied spectroscopy.

[71]  L W Jelinski,et al.  Molecular Orientation and Two-Component Nature of the Crystalline Fraction of Spider Dragline Silk , 1996, Science.

[72]  David L Kaplan,et al.  Silk as a Biomaterial. , 2007, Progress in polymer science.

[73]  Gangqin Xu,et al.  What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. , 2013, Soft matter.

[74]  J. Trancik,et al.  Nanostructural features of a spider dragline silk as revealed by electron and X-ray diffraction studies , 2006 .

[75]  W. Ryu,et al.  Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. , 2014, Materials science & engineering. C, Materials for biological applications.

[76]  Y. Wan,et al.  From Molecular Reconstruction of Mesoscopic Functional Conductive Silk Fibrous Materials to Remote Respiration Monitoring. , 2020, Small.

[77]  Joydip Kundu,et al.  Invited review nonmulberry silk biopolymers. , 2012, Biopolymers.

[78]  M. Jacquet,et al.  Fine organization of Bombyx mori fibroin heavy chain gene. , 2000, Nucleic acids research.

[79]  Xin Chen,et al.  Conformation transition kinetics of Bombyx mori silk protein , 2007, Proteins.

[80]  Xiang‐Yang Liu,et al.  How does a transient amorphous precursor template crystallization. , 2007, Journal of the American Chemical Society.

[81]  Evelyn Meyer,et al.  Patterning Polymers by Micro‐Fluid‐Contact Printing , 2001 .

[82]  Jianzhong Shao,et al.  Fourier Transform Raman and Fourier Transform Infrared Spectroscopy Studies of Silk Fibroin , 2005 .

[83]  Xiang‐Yang Liu,et al.  Experimental modelling of single-particle dynamic processes in crystallization by controlled colloidal assembly. , 2014, Chemical Society reviews.