Linear and nonlinear optical properties of chalcogenide microstructured optical fibers

Chalcogenide glasses are known for their large transparency in the mid-infrared and their high linear refractive index (>2). They present also a high non-linear coefficient (n2), 100 to 1000 times larger than for silica, depending on the composition. we have developed a casting method to prepare the microstructured chalcogenide preform. This method allows optical losses as low as 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various chalcogenide MOFs operating in the IR range has been fabricated in order to associate the high non-linear properties of these glasses and the original MOF properties. For example, small core fibers have been drawn to enhance the non linearities for telecom applications such as signal regeneration and generation of supercontinuum sources. On another hand, in the 3-12 µm window, single mode fibers and exposed core fibers have been realized for Gaussian beams propagation and sensors applications respectively.

[1]  L. Brilland,et al.  All-solid all-chalcogenide microstructured optical fiber. , 2013, Optics express.

[2]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber. , 2013, Optics express.

[3]  T. Koch,et al.  Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures , 1986 .

[4]  S. Afshar,et al.  Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing. , 2008, Optics express.

[5]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[6]  W. Jin,et al.  Design and modeling of a photonic crystal fiber gas sensor. , 2003, Applied optics.

[7]  Johann Troles,et al.  Experimental observation of higher order nonlinear absorption in tellurium based chalcogenide glasses , 2004 .

[8]  G. Renversez,et al.  Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling. , 2006, Optics express.

[9]  Virginie Nazabal,et al.  CO2 Detection Using Microstructured Chalcogenide Fibers , 2009 .

[10]  Jean-Luc Adam,et al.  Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses , 2012 .

[11]  Laurent Brilland,et al.  Casting method for producing low-loss chalcogenide microstructured optical fibers. , 2010, Optics express.

[12]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[13]  F. Wise,et al.  Highly nonlinear As-S-Se glasses for all-optical switching. , 2002, Optics letters.

[14]  Géraud Bouwmans,et al.  Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes. , 2007, Optics express.

[15]  D. Moss,et al.  Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber. , 2005, Optics express.

[16]  Olivier Sire,et al.  Chalcogenide glass fibers used as biosensors , 2003 .

[17]  P Bourdon,et al.  Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm. , 2011, Optics letters.

[18]  G. Canat,et al.  Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber , 2012, Other Conferences.

[19]  J. Adam,et al.  Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm. , 2010, Optics express.

[20]  Laurent Brilland,et al.  Fabrication of complex structures of Holey Fibers in Chalcogenide glass. , 2006, Optics express.

[21]  Bruno Bureau,et al.  Development of a chalcogenide glass fiber device for in situ pollutant detection , 2003 .

[22]  Jean-Luc Adam,et al.  Photonic Bandgap Propagation in All-Solid Chalcogenide Microstructured Optical Fibers , 2014, Materials.

[23]  Jean-Luc Adam,et al.  Interfaces impact on the transmission of chalcogenides photonic crystal fibres , 2008 .

[24]  Benjamin J Eggleton,et al.  Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. , 2008, Optics letters.

[25]  Houizot Patrick,et al.  Selenide glass single mode optical fiber for nonlinear optics , 2007 .

[26]  Yi Yu,et al.  High Average Power Mid-infrared Supercontinuum Generation in a Suspended Core Chalcogenide Fiber , 2014 .

[27]  Jean-Luc Adam,et al.  Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing , 2013 .

[28]  H. W. Astle,et al.  Low-loss single-material fibers made from pure fused silica , 1974 .

[29]  J. Adam,et al.  Chalcogenide glass hollow core photonic crystal fibers , 2010 .

[30]  F. Amrani,et al.  Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers. , 2014, Optics letters.

[31]  Younès Messaddeq,et al.  Two octaves mid-infrared supercontinuum generation in As₂Se₃ microwires. , 2014, Optics express.

[32]  J. Sanghera,et al.  Modeling of a mid-IR chalcogenide fiber Raman laser. , 2003, Optics express.

[33]  David J. Richardson,et al.  Chalcogenide holey fibres , 2000 .