Old And New Algorithms For Toeplitz Systems

Toeplitz linear systems and Toeplitz least squares problems commonly arise in digital signal processing. In this paper we survey some old, "well known" algorithms and some recent algorithms for solving these problems. We concentrate our attention on algorithms which can be implemented efficiently on a variety of parallel machines (including pipelined vector processors and systolic arrays). We distinguish between algorithms which require inner products, and algorithms which avoid inner products, and thus are better suited to parallel implementation on some parallel architectures. Finally, we mention some "asymptotically fast" 0(n(log n)2) algorithms and compare them with 0(n2) algorithms.

[1]  Charles E. Leiserson,et al.  Optimizing synchronous systems , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[2]  James R. Bunch,et al.  Stability of Methods for Solving Toeplitz Systems of Equations , 1985 .

[3]  Franklin T. Luk,et al.  A Systolic Array for the Linear-Time Solution of Toeplitz Systems of Equations , 1982 .

[4]  M. Morf,et al.  Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[5]  Philippe Delsarte,et al.  A polynomial approach to the generalized Levinson algorithm based on the Toeplitz distance , 1983, IEEE Trans. Inf. Theory.

[6]  George Cybenko,et al.  Fast toeplitz orthogonalization using inner decompositions , 1987 .

[7]  Lennart Ljung,et al.  The Factorization and Representation of Operators in the Algebra Generated by Toeplitz Operators , 1979 .

[8]  H. Akaike Block Toeplitz Matrix Inversion , 1973 .

[9]  L. Ljung,et al.  New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices , 1979 .

[10]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[11]  Rajendra Kumar,et al.  A fast algorithm for solving a Toeplitz system of equations , 1983, IEEE Trans. Acoust. Speech Signal Process..

[12]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[13]  G. Alistair Watson,et al.  An Algorithm for the Inversion of Block Matrices of Toeplitz Form , 1973, JACM.

[14]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[15]  M. Shensa,et al.  Remarks on a displacement-rank inversion method for Toeplitz systems , 1982 .

[16]  L. Csanky,et al.  Fast Parallel Matrix Inversion Algorithms , 1976, SIAM J. Comput..

[17]  I. Gohberg,et al.  Convolution Equations and Projection Methods for Their Solution , 1974 .

[18]  J. Jain An efficient algorithm for a large Toeplitz set of linear equations , 1979 .

[19]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[20]  W. E. Gentleman Least Squares Computations by Givens Transformations Without Square Roots , 1973 .

[21]  Franklin T. Luk,et al.  A fast but unstable orthogonal triangularization technique for Toeplitz matrices , 1987 .

[22]  Franklin T. Luk,et al.  Some Linear-Time Algorithms for Systolic Arrays , 2010, IFIP Congress.

[23]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[24]  James Durbin,et al.  The fitting of time series models , 1960 .

[25]  Bruce Ronald. Musicus,et al.  Levinson and fast Choleski algorithms for Toeplitz and almost Toeplitz matrices , 1988 .

[26]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[27]  Jorma Rissanen,et al.  Solution of linear equations with Hankel and Toeplitz matrices , 1974 .

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  F. Hoog A new algorithm for solving Toeplitz systems of equations , 1987 .

[30]  Richard P. Brent,et al.  Parallel solution of certain Toeplitz least-squares problems , 1986 .

[31]  B. Anderson,et al.  Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .

[32]  Richard P. Brent,et al.  A Note on Downdating the Cholesky Factorization , 1987 .

[33]  Shalhav Zohar,et al.  Toeplitz Matrix Inversion: The Algorithm of W. F. Trench , 1969, JACM.

[34]  H. T. Kung Why systolic architectures? , 1982, Computer.

[35]  G. Stewart Introduction to matrix computations , 1973 .

[36]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[37]  George Cybenko,et al.  The Numerical Stability of the Levinson-Durbin Algorithm for Toeplitz Systems of Equations , 1980 .

[38]  R. Brent,et al.  QR factorization of Toeplitz matrices , 1986 .

[39]  Martin Morf,et al.  Doubling algorithms for Toeplitz and related equations , 1980, ICASSP.

[40]  G. Stewart The Effects of Rounding Error on an Algorithm for Downdating a Cholesky Factorization , 1979 .

[41]  Shalhav Zohar,et al.  The Solution of a Toeplitz Set of Linear Equations , 1974, JACM.

[42]  E. Bareiss Numerical solution of linear equations with Toeplitz and Vector Toeplitz matrices , 1969 .

[43]  George Cybenko The numerical stability of the lattice algorithm for least squares linear prediction problems , 1984 .

[44]  G. Cybenko A general orthogonalization technique with applications to time series analysis and signal processing , 1983 .

[45]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[46]  N. Wiener The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction , 1949 .

[47]  T. Kailath A Theorem of I. Schur and Its Impact on Modern Signal Processing , 1986 .

[48]  Sun-Yuan Kung,et al.  A highly concurrent algorithm and pipeleined architecture for solving Toeplitz systems , 1983 .

[49]  Jean-Marc Delosme,et al.  Highly concurrent computing structures for matrix arithmetic and signal processing , 1982, Computer.

[50]  Adam W. Bojanczyk,et al.  Linearly Connected Arrays for Toeplitz Least-Squares Problems , 1990, J. Parallel Distributed Comput..

[51]  Jeffrey D Ullma Computational Aspects of VLSI , 1984 .