Complete N-photon Greenberger–Horne–Zeilinger-state analyzer and its applications to quantum communication

Abstract We propose a scheme to completely identify N -photon Greenberger–Horne–Zeilinger (GHZ) states based on the method of disentanglement with the cross-phase modulation (XPM) taking place in cross-Kerr medium between two single-photon pulses. The main idea of the scheme is also appropriate for other physical systems; hence we give the universal disentangling matrix for N -particle GHZ states. Using the present GHZ-state analyzer, we achieve the preparation of multiparticle GHZ states, quantum dense coding, and teleportation. All of these tasks are deterministic in ideal case, which is discussed in the paper.

[1]  K. Hinzer,et al.  Coupling and entangling of quantum states in quantum dot molecules. , 2001, Science.

[2]  Daniel Loss,et al.  Fermionic Bell-State Analyzer for Spin Qubits , 2005, Science.

[3]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[4]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[5]  Shangqing Gong,et al.  Universal Greenberger-Horne-Zeilinger-state analyzer based on two-photon polarization parity detection , 2005 .

[6]  S. Gong,et al.  Giant cross-Kerr nonlinearity in carbon nanotube quantum dots with spin-orbit coupling , 2009 .

[7]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[8]  Vitali,et al.  Complete quantum teleportation with a kerr nonlinearity , 2000, Physical review letters.

[9]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[10]  Jian-Wei Pan,et al.  Greenberger-Horne-Zeilinger-state analyzer , 1998 .

[11]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[12]  X. L. Zhang,et al.  Cluster-state preparation and multipartite entanglement analyzer with fermions , 2005, quant-ph/0512067.

[13]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[14]  Assessment of a quantum phase gate operation based on nonlinear optics , 2006, quant-ph/0605100.

[15]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[16]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[17]  Barry C Sanders,et al.  Large cross-phase modulation between slow copropagating weak pulses in 87Rb. , 2006, Physical review letters.

[18]  Pieter Kok,et al.  Effects of self-phase-modulation on weak nonlinear optical quantum gates , 2007, 0710.1810.

[19]  T. Spiller,et al.  Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities , 2004, quant-ph/0408117.

[20]  Gershon Kurizki,et al.  Deterministic quantum logic with photons via optically induced photonic band gaps , 2005 .

[21]  R. G. Beausoleil,et al.  High-efficiency quantum-nondemolition single-photon-number-resolving detector , 2005 .

[22]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[23]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[24]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.

[25]  Qi Guo,et al.  Simplified optical quantum-information processing via weak cross-Kerr nonlinearities , 2011 .

[26]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[27]  Lukin,et al.  Nonlinear optics and quantum entanglement of ultraslow single photons , 2000, Physical review letters.

[28]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[29]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.