Finding Curvilinear Features In Speckled Images

A method for finding curves in digital images with speckle noise is described. The solution method differs from standard linear convolutions followed by thresholds in that it explicitly allows curvature in the features. Maximum a posteriori (MAP) estimation is used, together with statistical models for the speckle noise and for the curve-generation process, to find the most probable estimate of the feature, given the image data. The estimation process is first described in general terms. Then, incorporation of the specific neighborhood system and a multiplicative noise model for speckle allows derivation of the solution, using dynamic programming, of the estimation problem. The detection of curvilinear features is considered separately. The detection results allow the determination of the minimal size of detectable feature. Finally, the estimation of linear features, followed by a detection step, is shown for computer-simulated images and for a SAR image of sea ice.