Feature sensitive multiscale editing on surfaces

A novel editing method for large triangular meshes is presented. We detect surface features, such as edge and corners, by computing local zero and first surface moments, using a robust and noise resistant method. The feature detection is encoded in a finite element matrix, passed to an algebraic multigrid (AMG) algorithm. The AMG algorithm generates a matrix hierarchy ranging from fine to coarse representations of the initial fine grid matrix. This hierarchy comes along with a corresponding multiscale of basis functions, which reflect the surface features on all hierarchy levels. We consider either these basis functions or distinct sets from an induced multiscale domain decomposition as handles for surface manipulation. We present a multiscale editor which enables Boolean operations on this domain decomposition and simply algebraic operations on the basis functions. Users can interactively design their favorite surface handles by simple grouping operations on the multiscale of domains. Several applications on large meshes underline the effectiveness and flexibility of the presented tool.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  J. Ruge,et al.  Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG) , 1984 .

[3]  A. Brandt Algebraic multigrid theory: The symmetric case , 1986 .

[4]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  David B. Cooper,et al.  Recognition and positioning of rigid objects using algebraic moment invariants , 1991, Optics & Photonics.

[6]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[7]  Carlo H. Séquin,et al.  Functional optimization for fair surface design , 1992, SIGGRAPH.

[8]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[9]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[10]  Emanuele Trucco,et al.  Geometric Invariance in Computer Vision , 1995 .

[11]  Bernard Chazelle,et al.  Strategies for polyhedral surface decomposition: an experimental study , 1995, SCG '95.

[12]  J. Weickert Foundations and applications of nonlinear anisotropic diffusion filtering , 1996 .

[13]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[14]  M. Griebel,et al.  Additive multilevel preconditioners based on bilinear interpolation, matrix-dependent geometric coarsening and algebraic multigrid coarsening for second-order elliptic PDEs , 1997 .

[15]  Dinesh Manocha,et al.  Feature-based surface decomposition for correspondence and morphing between polyhedra , 1998, Proceedings Computer Animation '98 (Cat. No.98EX169).

[16]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[17]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[18]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[19]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[20]  Ronen Basri,et al.  Fast multiscale image segmentation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[21]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[22]  Mark Meyer,et al.  Anisotropic Feature-Preserving Denoising of Height Fields and Bivariate Data , 2000, Graphics Interface.

[23]  Thomas A. Manteuffel,et al.  Algebraic Multigrid Based on Element Interpolation (AMGe) , 2000, SIAM J. Sci. Comput..

[24]  Shi-Min Hu,et al.  An effective feature-preserving mesh simplification scheme based on face constriction , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[25]  Markus H. Gross,et al.  Multiresolution feature extraction for unstructured meshes , 2001, Proceedings Visualization, 2001. VIS '01..

[26]  Henning Biermann,et al.  Approximate Boolean operations on free-form solids , 2001, SIGGRAPH.

[27]  David Harel,et al.  ACE: a fast multiscale eigenvectors computation for drawing huge graphs , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[28]  Ayellet Tal,et al.  Polyhedral surface decomposition with applications , 2002, Comput. Graph..

[29]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[30]  Matthias Zwicker,et al.  Pointshop 3D: an interactive system for point-based surface editing , 2002, SIGGRAPH.

[31]  Panayot S. Vassilevski,et al.  Spectral AMGe (ρAMGe) , 2003, SIAM J. Sci. Comput..

[32]  Martin Rumpf,et al.  Robust feature detection and local classification for surfaces based on moment analysis , 2004, IEEE Transactions on Visualization and Computer Graphics.

[33]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.