AN AVERAGING METHOD OF ELASTOPLASTIC BEHAVIOR OF COMPOSITES AND POLYCRYSTALLINE METALS

複合材料等の非均質材料の巨視的挙動の解析的な予測法に,森・田中理論に基づいた手法やHashin-Shtrikmanの上下界手法等があり,微視的な幾何条件とつり合いが考慮されている.著者らは弾性の場合に,古典的手法から上述の手法を包含し,かつさらに応用できる予測法を提案した.それは森・田中の考え方を3相材料に適用した上で,母材の体積比率を零にすることによって得られる2 相材料の予測手法で,従来の手法よりも実験値をより精度良く予測し,またHillのself-consistent解と同じ予測特性を持つことが明らかにされてきた.ここではその手法を弾塑性体に適用し,一般的な載荷状態で最適な母材の材料パラメータを選択する方法を提案する.そして,その予測結果を既存の実験値や他の解析結果等と比較し,精度と有用性を検討する.

[1]  J. Ju,et al.  Effective Elastoplastic Algorithms for Ductile Matrix Composites , 1997 .

[2]  G. P. Tandon,et al.  A Theory of Particle-Reinforced Plasticity , 1988 .

[3]  J. Ju,et al.  Effective elastoplastic behavior of ductile matrix composites containing randomly located aligned circular fibers , 2001 .

[4]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[5]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[6]  Amine Ouaar,et al.  Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms , 2003 .

[7]  T. Iwakuma,et al.  An estimate of average elastic moduli of composites and polycrystals , 2005 .

[8]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[9]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[10]  J. Ju,et al.  Micromechanics and effective transverse elastic moduli of composites with randomly located aligned circular fibers , 1998 .

[11]  Tetsuo Iwakuma,et al.  AVERAGE CHARACTERISTICS OF COMPOSITES AND POLYCRYSTALS , 2000 .

[12]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[13]  Jack C. Smith Experimental Values for the Elastic Constants of a Particulate-Filled Glassy Polymer , 1976, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.