Compressive random access for post-LTE systems

We introduce a random access procedure where control and data information is transmitted in the same “access” slot. The key idea is data-overlayed control signalling together with a dedicated frequency area for compressive measurements exploiting sparse channel profiles and, potentially, sparse user activity. This architecture is resource-efficent since otherwise pilots have to be suitably placed in the time-frequency grid for every potential user. We analyze the achievable rates depending on the key design parameters and show by simulations that sparse signal processing algorithms are indeed “strong” enough to retrieve the information symbols out of the induced noise. Moreover, for the very high dimensional receive space applied in this paper, the number of detected users is only limited by the sheer complexity rather than performance.

[1]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[2]  Jaehoon Jung,et al.  Zadoff-Chu Sequence Based Signature Identification for OFDM , 2013, IEEE Transactions on Wireless Communications.

[3]  J. Romberg,et al.  Restricted Isometries for Partial Random Circulant Matrices , 2010, arXiv.org.

[4]  Holger Rauhut,et al.  Suprema of Chaos Processes and the Restricted Isometry Property , 2012, ArXiv.

[5]  Gerhard Fettweis,et al.  5GNOW: Challenging the LTE Design Paradigms of Orthogonality and Synchronicity , 2012, 2013 IEEE 77th Vehicular Technology Conference (VTC Spring).

[6]  Frank Schaich,et al.  5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications , 2014, IEEE Communications Magazine.

[7]  Justin Romberg,et al.  Compressive Sampling via Random Convolution , 2007 .

[8]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[9]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[10]  Carsten Bockelmann,et al.  Coping with CDMA Asynchronicity in Compressive Sensing Multi-User Detection , 2013, 2013 IEEE 77th Vehicular Technology Conference (VTC Spring).

[11]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[12]  Giuseppe Caire,et al.  Multiuser MIMO Achievable Rates With Downlink Training and Channel State Feedback , 2007, IEEE Transactions on Information Theory.

[13]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[14]  Georgios B. Giannakis,et al.  Exploiting Sparse User Activity in Multiuser Detection , 2011 .

[15]  Slawomir Stanczak,et al.  On pilot-based multipath channel estimation for uplink CDMA systems: an overloaded case , 2006, IEEE Transactions on Signal Processing.

[16]  S. Foucart Sparse Recovery Algorithms: Sufficient Conditions in Terms of RestrictedIsometry Constants , 2012 .

[17]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[18]  A. Robert Calderbank,et al.  Asynchronous code-division random access using convex optimization , 2011, Phys. Commun..

[19]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[20]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[21]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[22]  S. Foucart A note on guaranteed sparse recovery via ℓ1-minimization , 2010 .