Theory and simulation of the bistable behaviour of optically bound particles in the Mie size regime

Optical binding refers to the light-induced organization and ordering of microparticles. In this paper, we present a theoretical treatment of optical binding in the Mie size regime using the paraxial approximation for field propagation combined with the Lorentz force law. Experimental studies of the separation between two dielectric spheres in a counter-propagating (CP) geometry are compared to numerical predictions. We explore the bistable nature of the bound sphere separation and its dependency on the refractive index mismatch between the spheres and the host medium, with an emphasis on the fibre separation and adiabaticity of the system.

[1]  W Sibbett,et al.  Visualization of optical binding of microparticles using a femtosecond fiber optical trap. , 2006, Optics express.

[2]  M. Nieto-Vesperinas,et al.  Time-averaged total force on a dipolar sphere in an electromagnetic field. , 2000, Optics letters.

[3]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[4]  Peter John Rodrigo,et al.  Four-dimensional optical manipulation of colloidal particles , 2005 .

[5]  M. Feit,et al.  Computation of mode properties in optical fiber waveguides by a propagating beam method. , 1980, Applied optics.

[6]  Marta Ibisate,et al.  Refractive Index Properties of Calcined Silica Submicrometer Spheres , 2002 .

[7]  W Sibbett,et al.  Creation and Manipulation of Three-Dimensional Optically Trapped Structures , 2002, Science.

[8]  M. Prentiss,et al.  Demonstration of a fiber-optical light-force trap. , 1993, Optics letters.

[9]  K Dholakia,et al.  Optically bound microscopic particles in one dimension. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  N. K. Metzger,et al.  Observation of bistability and hysteresis in optical binding of two dielectric spheres. , 2006, Physical review letters.

[11]  Yael Roichman,et al.  Holographic assembly of quasicrystalline photonic heterostructures. , 2005, Optics express.

[12]  W Sibbett,et al.  Optical trapping of three-dimensional structures using dynamic holograms. , 2003, Optics express.

[13]  Wolfgang Singer,et al.  Self-organized array of regularly spaced microbeads in a fiber-optical trap , 2003 .

[14]  Masud Mansuripur,et al.  Radiation pressure and the distribution of electromagnetic force in dielectric media. , 2005 .

[15]  Christopher D. Mellor,et al.  Array formation in evanescent waves. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  S Tisa,et al.  Single-photon imaging at 20,000 frames/s. , 2005, Optics letters.

[17]  Johannes Courtial,et al.  3D manipulation of particles into crystal structures using holographic optical tweezers. , 2004, Optics express.

[18]  Tsvi Tlusty,et al.  OPTICAL GRADIENT FORCES OF STRONGLY LOCALIZED FIELDS , 1998 .

[19]  B. Richerzhagen,et al.  Interferometer for measuring the absolute refractive index of liquid water as a function of temperature at 1.064 µm. , 1996, Applied optics.

[20]  K. Dholakia,et al.  One-dimensional optically bound arrays of microscopic particles. , 2002, Physical review letters.