Sexual reproduction and saprotrophic dominance by the ambrosial fungus Flavodon subulatus (= Flavodon ambrosius)

[1]  J. Smith,et al.  Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi , 2020, Fungal Ecology.

[2]  D. Lindner,et al.  Relationships among wood‐boring beetles, fungi, and the decomposition of forest biomass , 2019, Molecular ecology.

[3]  F. Roets,et al.  Patterns of coevolution between ambrosia beetle mycangia and the Ceratocystidaceae, with five new fungal genera and seven new species , 2019, Persoonia.

[4]  M. Jusino,et al.  A selective fungal transport organ (mycangium) maintains coarse phylogenetic congruence between fungus-farming ambrosia beetles and their symbionts , 2019, Proceedings of the Royal Society B.

[5]  M. Jusino,et al.  Invasion of an inconspicuous ambrosia beetle and fungus may affect wood decay in Southeastern North America , 2018, Biological Invasions.

[6]  A. Lemmon,et al.  Phylogenomics clarifies repeated evolutionary origins of inbreeding and fungus farming in bark beetles (Curculionidae, Scolytinae). , 2018, Molecular phylogenetics and evolution.

[7]  Che-Chih Chen,et al.  Hydnophanerochaete and Odontoefibula, two new genera of phanerochaetoid fungi (Polyporales, Basidiomycota) from East Asia , 2018, MycoKeys.

[8]  Jonathan M Palmer,et al.  Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data , 2018, PeerJ.

[9]  J. McCutcheon,et al.  Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars , 2018, Molecular ecology.

[10]  D. Aanen,et al.  Low intraspecific genetic diversity indicates asexuality and vertical transmission in the fungal cultivars of ambrosia beetles , 2018 .

[11]  M. Jusino,et al.  Wood decay fungus Flavodon ambrosius (Basidiomycota: Polyporales) is widely farmed by two genera of ambrosia beetles. , 2017, Fungal biology.

[12]  Yu-Cheng Dai,et al.  Phylogeny and diversity of the morphologically similar polypore genera Rigidoporus, Physisporinus, Oxyporus, and Leucophellinus , 2017, Mycologia.

[13]  C. Ranger,et al.  First report of a sexual state in an ambrosia fungus: Ambrosiella cleistominuta sp. nov. associated with the ambrosia beetle Anisandrus maiche , 2017 .

[14]  M. Kasson,et al.  Ambrosia beetle Premnobius cavipennis (Scolytinae: Ipini) carries highly divergent ascomycotan ambrosia fungus, Afroraffaelea ambrosiae gen. nov. et sp. nov. (Ophiostomatales) , 2017 .

[15]  L. Stelinski,et al.  The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management. , 2017, Annual review of entomology.

[16]  B. Slippers,et al.  Host specificity and diversity of Amylostereum associated with Japanese siricids , 2016 .

[17]  Cameron M. Stauder,et al.  Mutualism with aggressive wood-degrading Flavodon ambrosius (Polyporales) facilitates niche expansion and communal social structure in Ambrosiophilus ambrosia beetles ☆ , 2016 .

[18]  J. Boomsma,et al.  Nutrition mediates the expression of cultivar–farmer conflict in a fungus-growing ant , 2016, Proceedings of the National Academy of Sciences.

[19]  J. Hulcr,et al.  Flavodon ambrosius sp. nov., a basidiomycetous mycosymbiont of Ambrosiodmus ambrosia beetles , 2016 .

[20]  T. Crowther,et al.  Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs , 2016 .

[21]  P. Kendra,et al.  Fungal symbionts in three exotic ambrosia beetles, Xylosandrus amputatus, Xyleborinus andrewesi, and Dryoxylon onoharaense (Coleoptera: Curculionidae: Scolytinae: Xyleborini) in Florida , 2015, Symbiosis.

[22]  S. Reed,et al.  Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. , 2015, Fungal biology.

[23]  Robert C. Edgar,et al.  Error filtering, pair assembly and error correction for next-generation sequencing reads , 2015, Bioinform..

[24]  D. Short,et al.  New Fungus-Insect Symbiosis: Culturing, Molecular, and Histological Methods Determine Saprophytic Polyporales Mutualists of Ambrosiodmus Ambrosia Beetles , 2015, PloS one.

[25]  H. Rogers,et al.  Priority effects during fungal community establishment in beech wood , 2015, The ISME Journal.

[26]  D. Lindner,et al.  A Minimally Invasive Method for Sampling Nest and Roost Cavities for Fungi: a Novel Approach to Identify the Fungi Associated with Cavity-Nesting Birds , 2014 .

[27]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[28]  H. Friberg,et al.  New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and natural communities. , 2012, FEMS microbiology ecology.

[29]  Yu Dai,et al.  Wood-inhabiting fungi in southern China. 6. Polypores from Guangxi Autonomous Region , 2012 .

[30]  Yi Wang,et al.  mvabund– an R package for model‐based analysis of multivariate abundance data , 2012 .

[31]  Tadashi Fukami,et al.  Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. , 2012, Ecology letters.

[32]  D. Lindner,et al.  Initial fungal colonizer affects mass loss and fungal community development in Picea abies logs 6 yr after inoculation , 2011 .

[33]  Jonathan M. Chase,et al.  Using null models to disentangle variation in community dissimilarity from variation in α‐diversity , 2011 .

[34]  T. Fukami,et al.  Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. , 2010, Ecology letters.

[35]  C. Breuil,et al.  Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. , 2009, Mycological research.

[36]  Yu Dai,et al.  Polypores (Basidiomycota) from Qin Mts. in Shaanxi Province, Central China , 2009 .

[37]  D. Lindner,et al.  Effects of cloning and root-tip size on observations of fungal ITS sequences from Picea glauca roots , 2009, Mycologia.

[38]  C. A. Reddy,et al.  Lignin-Modifying Enzymes of Flavodon flavus, a Basidiomycete Isolated from a Coastal Marine Environment , 1999, Applied and Environmental Microbiology.

[39]  U. Mueller,et al.  The evolution of agriculture in ants , 1998, Science.

[40]  T. Bruns,et al.  ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts , 1993, Molecular ecology.

[41]  J. Simpson,et al.  Eusociality in the beetleAustroplatypus incompertus (Coleoptera: Curculionidae) , 1992, Naturwissenschaften.

[42]  K. Hjortstam,et al.  Aphyllophorales from Northern Thailand , 1982 .

[43]  P. Talbot The Sirex-Amylostereum-Pinus association. , 1977 .

[44]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[45]  L. Hai Polypores from Bawangling Nature Reserve,Hainan Province , 2010 .

[46]  M. Blackwell,et al.  Ecology and evolution of mycophagous bark beetles and their fungal partners. , 2005 .

[47]  D. Aanen,et al.  Evolutionary dynamics of the mutualistic symbiosis between fungus-growing termites and Termitomyces fungi. , 2005 .

[48]  Yu-Cheng Dai,et al.  Three polypores from Xizang new to China , 2005 .

[49]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[50]  Paul Stamets,et al.  Growing Gourmet and Medicinal Mushrooms , 1993 .

[51]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .