The tanh and the sine-cosine methods for the complex modified K dV and the generalized K dV equations

The complex modified K dV (CMK dV) equation and the generalized K dV equation are investigated by using the tanh method and the sine-cosine method. A variety of exact travelling wave solutions with compact and noncompact structures are formally obtained for each equation. The study reveals the power of the two schemes where each method complements the other.

[1]  Abdul-Majid Wazwaz,et al.  New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations , 2004 .

[2]  S. Dusuel,et al.  From kinks to compactonlike kinks , 1998 .

[3]  Abdul-Majid Wazwaz,et al.  Compactons dispersive structures for variants of the K(n,n) and the KP equations , 2002 .

[4]  Abdul-Majid Wazwaz,et al.  A study on nonlinear dispersive partial differential equations of compact and noncompact solutions , 2003, Appl. Math. Comput..

[5]  Jianke Yang,et al.  Stable embedded solitons. , 2003, Physical review letters.

[6]  Abdul-Majid Wazwaz,et al.  Compactons in a class of nonlinear dispersive equations , 2003 .

[7]  et al,et al.  Measurement of Time-Dependent CP-Violating Asymmetries in B0→ϕKS0, K+K-KS0, and η′KS0 Decays , 2003 .

[8]  Gulcin M. Muslu,et al.  A split-step Fourier method for the complex modified Korteweg-de Vries equation☆ , 2003 .

[9]  Hyman,et al.  Compactons: Solitons with finite wavelength. , 1993, Physical review letters.

[10]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[11]  L. Ostrovsky,et al.  Nonlinear vector waves in a mechanical model of a molecular chain , 1983 .

[12]  W. Hereman,et al.  The tanh method: II. Perturbation technique for conservative systems , 1996 .

[13]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .

[14]  Abdul-Majid Wazwaz,et al.  Distinct variants of the KdV equation with compact and noncompact structures , 2004, Appl. Math. Comput..

[15]  Jing Ping Wang A List of 1+1 Dimensional Integrable Equations and Their Properties , 2002 .

[16]  Abdul-Majid Wazwaz,et al.  General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive K(n, n) equations in higher dimensional spaces , 2002, Appl. Math. Comput..

[17]  Allan P. Fordy,et al.  Soliton Theory: A Survey of Results , 1990 .

[18]  Yuri S. Kivshar,et al.  Self-focusing and transverse instabilities of solitary waves , 2000 .

[19]  Abdul-Majid Wazwaz,et al.  Exact special solutions with solitary patterns for the nonlinear dispersive K(m,n) equations , 2002 .

[20]  Andrei Ludu,et al.  Patterns on liquid surfaces: cnoidal waves, compactons and scaling , 1998, physics/0003077.

[21]  Willy Hereman,et al.  Symbolic Computation of Conserved Densities for Systems of Nonlinear Evolution Equations , 1997, J. Symb. Comput..

[22]  W. Hereman,et al.  The tanh method: I. Exact solutions of nonlinear evolution and wave equations , 1996 .

[23]  W. Hereman,et al.  Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA , 1990 .

[24]  Abdul-Majid Wazwaz,et al.  The tanh method for traveling wave solutions of nonlinear equations , 2004, Appl. Math. Comput..

[25]  Abdul-Majid Wazwaz,et al.  Variants of the generalized KdV equation with compact and noncompact structures , 2004 .

[26]  M. Wadati,et al.  The Exact Solution of the Modified Korteweg-de Vries Equation , 1972 .

[27]  Abdul-Majid Wazwaz,et al.  Partial differential equations : methods and applications , 2002 .

[28]  Abdul-Majid Wazwaz,et al.  Compactons and solitary patterns structures for variants of the KdV and the KP equations , 2003, Appl. Math. Comput..

[29]  M. Wadati Introduction to solitons , 2001 .

[30]  Charles F. F. Karney,et al.  Nonlinear evolution of lower hybrid waves , 1979 .

[31]  Abdul-Majid Wazwaz,et al.  General compactons solutions for the focusing branch of the nonlinear dispersive K(n, n) equations in higher-dimensional spaces , 2002, Appl. Math. Comput..

[32]  Abdul-Majid Wazwaz,et al.  New solitary-wave special solutions with compact support for the nonlinear dispersive K(m, n) equations , 2002 .