Depth-order point classification techniques for CSG display algorithms

Constructive Solid Geometry (CSG) defines objects as Boolean combinations (CSG trees) of primitive solids. To display such objects, one must classify points on the surfaces of the primitive solids with respect to the resulting composite object, to test whether these points lie on the boundary of the composite object or not. Although the point classification is trivial compared to the surface classification (i.e., the computation of the composite object), for CSG models with a large number of primitive solids (large CSG trees), the point classification may still consume a considerable fraction of the total processing time. This paper presents an overview of existing and new efficiency-improving techniques for classifying points in depth order. The different techniques are compared through experiments.

[1]  K. M. Quinlan,et al.  Reducing the effect of complexity on volume model evaluation , 1982 .

[2]  Scott D. Roth,et al.  Ray casting for modeling solids , 1982, Comput. Graph. Image Process..

[3]  Willem F. Bronsvoort,et al.  Two methods for improving the efficiency of ray casting in solid modelling , 1984 .

[4]  Frederik W. Jansen,et al.  A Pixel-Parallelhidden Surface Algorithm For Constructive Solid Geometry , 1986, Eurographics.

[5]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[6]  Hiroyuki Sato,et al.  Fast image generation of construcitve solid geometry using a cellular array processor , 1985, SIGGRAPH '85.

[7]  Peter R. Atherton,et al.  A scan-line hidden surface removal procedure for constructive solid geometry , 1983, SIGGRAPH.

[8]  Frederik W. Jansen A CSG List Priority Hidden Surface Algorithm , 1985, Eurographics.

[9]  Robert F. Sproull,et al.  Principles in interactive computer graphics , 1973 .

[10]  James D. Foley,et al.  Fundamentals of interactive computer graphics , 1982 .

[11]  Willem F. Bronsvoort Techniques for reducing Boolean evaluation time in CSG scan-line algorithms , 1986 .

[12]  Hanan Samet,et al.  Bintrees, CSG trees, and time , 1985, SIGGRAPH.

[13]  J. J. Van Wijk,et al.  On new types of solid models and their visualization with ray tracing , 1986 .

[14]  A. L. Thomas Geometric modelling and display primitives towards specialised hardware , 1983, SIGGRAPH.

[15]  Aristides A. G. Requicha,et al.  Efficient editing of solid models by exploiting structural and spatial locality , 1984, Comput. Aided Geom. Des..

[16]  Donald P. Greenberg,et al.  Improved Computational Methods for Ray Tracing , 1984, TOGS.

[17]  Aristides A. G. Requicha,et al.  Algorithms for computing the volume and other integral properties of solids. II. A family of algorithms based on representation conversion and cellular approximation , 1982, CACM.

[18]  Martin E. Newell,et al.  A new approach to the shaded picture problem , 1972 .

[19]  Yukinori Kakazu,et al.  Extended Depth-Buffer Algorithms for Hidden-Surface Visualization , 1984, IEEE Computer Graphics and Applications.

[20]  Robert F. Sproull,et al.  Principles of interactive computer graphics (2nd ed.) , 1979 .

[21]  Aristides A. G. Requicha,et al.  Depth-Buffering Display Techniques for Constructive Solid Geometry , 1986, IEEE Computer Graphics and Applications.

[22]  Jarek Rossignac,et al.  Active zones in CSG for accelerating boundary evaluation, redundancy elimination, interference detection, and shading algorithms , 1988, TOGS.

[23]  ARISTIDES A. G. REQUICHA,et al.  Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.

[24]  Michael J. Bailey,et al.  The Vectorization of a Ray-Tracing Algorithm for Improved Execution Speed , 1985, IEEE Computer Graphics and Applications.

[25]  Henry Fuchs,et al.  Fast constructive-solid geometry display in the pixel-powers graphics system , 1986, SIGGRAPH.

[26]  Robert B. Tilove,et al.  Set Membership Classification: A Unified Approach to Geometric Intersection Problems , 1980, IEEE Transactions on Computers.