Development and evaluation of a reference measurement procedure for the determination of estradiol-17beta in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry.

19-Norandrosterone (19-NA) is the major metabolite of the steroid nandrolone, one of the most commonly abused anabolic androgenic agents. 19-NA exists mainly as the glucuronide form in human urine. A candidate reference measurement procedure for 19-NA in urine involving isotope dilution coupled with liquid chromatography/tandem mass spectrometry (LC/MS/MS) has been developed and critically evaluated. The 19-NA glucuronide was enzymatically hydrolyzed, and the 19-NA along with its internal standard (deuterated 19-NA) was extracted from urine using liquid-liquid extraction prior to reversed-phase LC/MS/MS. The accuracy of the measurement of 19-NA was evaluated by a recovery study of added 19-NA. The recovery of the added 19-NA ranged from 99.1 to 101.4%. This method was applied to the determination of 19-NA in urine samples fortified with 19-NA glucuronide at three different concentrations (equivalent to 1, 2, and 10 ng/mL 19-NA). Excellent reproducibility was obtained with within-set coefficients of variation (CVs) ranging from 0.2 to 1.2%, and between-set CVs ranging from 0.1 to 0.5%. Excellent linearity was also obtained with correlation coefficients of all linear regression lines (measured intensity ratios vs mass ratios) ranging from 0.9997 to 0.9999. The detection limit for 19-NA at a signal-to-noise ratio of approximately 3 was 16 pg. The mean results of 19-NA yielded from hydrolysis of 19-NA glucuronide compared well with the theoretical values (calculated from the conversion of 19-NA glucuronide to 19-NA) with absolute relative differences ranging from 0.2 to 1.4%. This candidate reference measurement procedure for 19-NA in urine, which demonstrates good accuracy and precision and low susceptibility to interferences, can be used to provide an accuracy base to which routine methods for 19-NA can be compared and that will serve as a standard of higher order for measurement traceability.