P-algorithm based on a simplicial statistical model of multimodal functions

A well-recognized one-dimensional global optimization method is generalized to the multidimensional case. The generalization is based on a multidimensional statistical model of multimodal functions constructed by generalizing computationally favorable properties of a popular one-dimensional model—the Wiener process. A simplicial partition of a feasible region is essential for the construction of the model. The basic idea of the proposed method is to search where improvements of the objective function are most probable; a probability of improvement is evaluated with respect to the statistical model. Some results of computational experiments are presented.

[1]  Ricardo H. C. Takahashi,et al.  Algorithm 860: SimpleS—an extension of Freudenthal's simplex subdivision , 2006, TOMS.

[2]  H. Kushner A versatile stochastic model of a function of unknown and time varying form , 1962 .

[3]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[4]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[5]  Yaroslav D. Sergeyev,et al.  Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..

[6]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[7]  Roman G. Strongin,et al.  Global optimization with non-convex constraints , 2000 .

[8]  A. A. Zhigli︠a︡vskiĭ,et al.  Stochastic Global Optimization , 2007 .

[9]  Mirjam Dür,et al.  Algorithmic copositivity detection by simplicial partition , 2008 .

[10]  Antanas Zilinskas,et al.  A review of statistical models for global optimization , 1992, J. Glob. Optim..

[11]  Kenneth Holmström,et al.  An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization , 2008, J. Glob. Optim..

[12]  Remigijus Paulavičius,et al.  Analysis of different norms and corresponding Lipschitz constants for global optimization in multidi , 2007 .

[13]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[14]  J. L. Maryak,et al.  Bayesian Heuristic Approach to Discrete and Global Optimization , 1999, Technometrics.

[15]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[16]  A. ilinskas Axiomatic characterization of a global optimization algorithm and investigation of its search strategy , 1985 .

[17]  Julius Žilinskas,et al.  Improved Lipschitz bounds with the first norm for function values over multidimensional simplex , 2008 .

[18]  Julius Zilinskas,et al.  Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds , 2010, Optim. Lett..

[19]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[20]  Julius Žilinskas,et al.  Branch and bound with simplicial partitions for global optimization , 2008 .

[21]  A. Žilinskas,et al.  One-Dimensional P-Algorithm with Convergence Rate O(n−3+δ) for Smooth Functions , 2000 .

[22]  A. Zilinskas,et al.  Global optimization based on a statistical model and simplicial partitioning , 2002 .

[23]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[24]  A. Zilinskas,et al.  On the Convergence of the P-Algorithm for One-Dimensional Global Optimization of Smooth Functions , 1999 .

[25]  John N. Hooker,et al.  Testing heuristics: We have it all wrong , 1995, J. Heuristics.

[26]  Mirjam Dür,et al.  Probabilistic subproblem selection in branch-and-bound algorithms , 2005 .

[27]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[28]  Reiner Horst,et al.  On generalized bisection of n-simplices , 1997, Math. Comput..

[29]  Peter C. Fishburn,et al.  Decision And Value Theory , 1965 .

[30]  J. Mockus,et al.  The Bayesian approach to global optimization , 1989 .