P-algorithm based on a simplicial statistical model of multimodal functions
暂无分享,去创建一个
[1] Ricardo H. C. Takahashi,et al. Algorithm 860: SimpleS—an extension of Freudenthal's simplex subdivision , 2006, TOMS.
[2] H. Kushner. A versatile stochastic model of a function of unknown and time varying form , 1962 .
[3] Hans-Martin Gutmann,et al. A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..
[4] Michael L. Stein,et al. Interpolation of spatial data , 1999 .
[5] Yaroslav D. Sergeyev,et al. Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..
[6] P. Pardalos,et al. Handbook of global optimization , 1995 .
[7] Roman G. Strongin,et al. Global optimization with non-convex constraints , 2000 .
[8] A. A. Zhigli︠a︡vskiĭ,et al. Stochastic Global Optimization , 2007 .
[9] Mirjam Dür,et al. Algorithmic copositivity detection by simplicial partition , 2008 .
[10] Antanas Zilinskas,et al. A review of statistical models for global optimization , 1992, J. Glob. Optim..
[11] Kenneth Holmström,et al. An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization , 2008, J. Glob. Optim..
[12] Remigijus Paulavičius,et al. Analysis of different norms and corresponding Lipschitz constants for global optimization in multidi , 2007 .
[13] R. Horst,et al. Global Optimization: Deterministic Approaches , 1992 .
[14] J. L. Maryak,et al. Bayesian Heuristic Approach to Discrete and Global Optimization , 1999, Technometrics.
[15] J D Pinter,et al. Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .
[16] A. ilinskas. Axiomatic characterization of a global optimization algorithm and investigation of its search strategy , 1985 .
[17] Julius Žilinskas,et al. Improved Lipschitz bounds with the first norm for function values over multidimensional simplex , 2008 .
[18] Julius Zilinskas,et al. Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds , 2010, Optim. Lett..
[19] Thomas J. Santner,et al. The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.
[20] Julius Žilinskas,et al. Branch and bound with simplicial partitions for global optimization , 2008 .
[21] A. Žilinskas,et al. One-Dimensional P-Algorithm with Convergence Rate O(n−3+δ) for Smooth Functions , 2000 .
[22] A. Zilinskas,et al. Global optimization based on a statistical model and simplicial partitioning , 2002 .
[23] Donald R. Jones,et al. A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..
[24] A. Zilinskas,et al. On the Convergence of the P-Algorithm for One-Dimensional Global Optimization of Smooth Functions , 1999 .
[25] John N. Hooker,et al. Testing heuristics: We have it all wrong , 1995, J. Heuristics.
[26] Mirjam Dür,et al. Probabilistic subproblem selection in branch-and-bound algorithms , 2005 .
[27] Aimo A. Törn,et al. Global Optimization , 1999, Science.
[28] Reiner Horst,et al. On generalized bisection of n-simplices , 1997, Math. Comput..
[29] Peter C. Fishburn,et al. Decision And Value Theory , 1965 .
[30] J. Mockus,et al. The Bayesian approach to global optimization , 1989 .