Orientation-dependent electro-optical response of BaTiO 3 on SrTiO 3-buffered Si ( 001 ) studied via spectroscopic ellipsometry

To design a high performance BaTiO3 (BTO)-integrated Si modulator, understanding how BTO domain orientations influence its electro-optical (EO) properties is crucial. The 100-nm-thick BTO films with c-oriented and a-oriented domains are obtained by exploiting various thickness of SrTiO3 buffer layers grown on Si(001) substrates. Then, the electro-optical behavior for 2 differently oriented samples is analyzed using spectroscopic ellipsometry. © 2017 Optical Society of America OCIS codes: (160.2660) Ferroelectrics; (160.2100) Electro-optical materials; (190.4400) Nonlinear optics, materials; (310.0310) Thin films; (310.3840) Materials and process characterization; (310.6860) Thin films, optical properties. References and links 1. E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, “Improper ferroelectricity in perovskite oxide artificial superlattices,” Nature 452(7188), 732–736 (2008). 2. C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, “Optical response of high-dielectricconstant perovskite-related oxide,” Science 293(5530), 673–676 (2001). 3. R. W. Whatmore, “Pyroelectric ceramics and devices for thermal infra-red detection and imaging,” Ferroelectrics 118(1), 241–259 (1991). 4. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-free piezoceramics,” Nature 432(7013), 84–87 (2004). 5. F. S. Chen, J. E. Geusic, S. K. Kurtz, J. G. Skinner, and S. H. Wemple, “Light Modulation and Beam Deflection with Potassium Tantalate‐Niobate Crystals,” J. Appl. Phys. 37(1), 388–398 (1966). 6. B. W. Wessels, “Ferroelectric Epitaxial Thin Films for Integrated Optics,” Annu. Rev. Mater. Res. 37(1), 659– 679 (2007). 7. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulator for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000). 8. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi 201(2), 253–283 (2004). 9. R. A. Soref and B. R. Bennett, “Electrooptical effect in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). 10. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). 11. M. Pantouvaki, P. Verheyen, J. D. Coster, G. Lepage, P. Absil, and J. V. Campenhout, “56Gb/s ring modulator on a 300mm silicon photonics platform,” in 2015 European Conference on Optical Communication (ECOC), 2015), 1–3. 12. G. T. Reed and C. E. Jason Png, “Silicon optical modulators,” Mater. Today 8(1), 40–50 (2005). 13. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). 14. P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate photonics on silicon substrates,” Opt. Express 21(21), 25573–25581 (2013). 15. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), Vol. 10. 16. A. A. Demkov and A. B. Posadas, Integration of Functional Oxides with Semiconductors (Springer, 2014). Vol. 7, No. 6 | 1 Jun 2017 | OPTICAL MATERIALS EXPRESS 2030 #291887 https://doi.org/10.1364/OME.7.002030 Journal © 2017 Received 31 Mar 2017; revised 14 May 2017; accepted 15 May 2017; published 19 May 2017 Corrected: 19 June 2017 17. J. W. Reiner, A. M. Kolpak, Y. Segal, K. F. Garrity, S. Ismail-Beigi, C. H. Ahn, and F. J. Walker, “Crystalline oxides on silicon,” Adv. Mater. 22(26-27), 2919–2938 (2010). 18. D. G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M. A. Zurbuchen, “A Thin Film Approach to Engineering Functionality into Oxides,” J. Am. Ceram. Soc. 91(8), 2429–2454 (2008). 19. R. McKee, F. Walker, and M. Chisholm, “Crystalline oxides on silicon: the first five monolayers,” Phys. Rev. Lett. 81(14), 3014–3017 (1998). 20. C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14(3), 1419–1425 (2014). 21. S. Abel, T. Stoferle, C. Marchiori, D. Caimi, L. Czornomaz, M. Stuckelberger, M. Sousa, B. J. Offrein, and J. Fompeyrine, “A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning,” J. Lightwave Technol. 34(8), 1688–1693 (2016). 22. K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. Q. Chen, D. G. Schlom, and C. B. Eom, “Enhancement of ferroelectricity in strained BaTiO3 thin films,” Science 306(5698), 1005–1009 (2004). 23. C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8(10), 748–754 (2013). 24. C. Merckling, G. Saint-Girons, C. Botella, G. Hollinger, M. Heyns, J. Dekoster, and M. Caymax, “Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates,” Appl. Phys. Lett. 98(9), 092901 (2011). 25. G. Delhaye, C. Merckling, M. El-Kazzi, G. Saint-Girons, M. Gendry, Y. Robach, G. Hollinger, L. Largeau, and G. Patriarche, “Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001),” J. Appl. Phys. 100(12), 124109 (2006). 26. N. Lucas, H. Zabel, H. Morkoc, and H. Unlu, “Anisotropy of thermal expansion of GaAs on Si(001),” Appl. Phys. Lett. 52(25), 2117–2119 (1988). 27. M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, R. Cid, J. Rubio-Zuazo, G. R. Castro, J. Van Campenhout, P. Absil, and C. Merckling, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si(001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” to be published in Appl. Phys. Express. 28. F. Eltes, D. Caimi, F. Fallegger, M. Sousa, E. O’Connor, M. D. Rossell, B. Offrein, J. Fompeyrine, and S. Abel, “Low-loss BaTiO3–Si waveguides for nonlinear integrated photonics,” ACS Photonics 3(9), 1698–1703 (2016). 29. M. Li, J. Zhou, X. Jing, M. Zeng, S. Wu, J. Gao, Z. Zhang, X. Gao, X. Lu, J. M. Liu, and M. Alexe, “Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies,” Adv. Electron. Mater. 1(6), 1500069 (2015). 30. M. H. M. Hsu, C. Merckling, S. El Kazzi, M. Pantouvaki, O. Richard, H. Bender, J. Meersschaut, J. Van Campenhout, P. Absil, and D. Van Thourhout, “Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001),” J. Appl. Phys. 120(22), 225114 (2016). 31. D. Crandles, B. Nicholas, C. Dreher, C. Homes, A. McConnell, B. Clayman, W. Gong, and J. Greedan, “Optical properties of highly reduced SrTiO 3-x,” Phys. Rev. B 59(20), 12842–12846 (1999). 32. M. H. M. Hsu et al., imec, Kapeldreef 75, 3001, Leuven, Belgium, are preparing a manuscript to be called “Crystal structures and ferroelectricity for epitaxial BaTiO3 on SrTiO3-on-Si pseudo-substrate using plasmaassisted molecular beam epitaxy.” 33. D. V. Likhachev, N. Malkova, and L. Poslavsky, “Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap,” Thin Solid Films 589, 844–851 (2015). 34. M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B Condens. Matter 50(9), 5941–5949 (1994).

[1]  Philippe Ghosez,et al.  Improper ferroelectricity in perovskite oxide artificial superlattices , 2008, Nature.

[2]  Chi Xiong,et al.  Active silicon integrated nanophotonics: ferroelectric BaTiO₃ devices. , 2014, Nano letters.

[3]  V. Gopalan,et al.  Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films , 2004, Science.

[4]  C. Merckling,et al.  Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates , 2011 .

[5]  W. S. Graswinckel,et al.  Optical Response of High-Dielectric-Constant Perovskite-Related Oxide , 2001, Science.

[6]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[7]  O. Richard,et al.  Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si(001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers , 2017 .

[8]  Catherine Dubourdieu,et al.  Switching of ferroelectric polarization in epitaxial BaTiO₃ films on silicon without a conducting bottom electrode. , 2013, Nature nanotechnology.

[9]  M. Alexe,et al.  Controlling Resistance Switching Polarities of Epitaxial BaTiO3 Films by Mediation of Ferroelectricity and Oxygen Vacancies , 2015 .

[10]  N. Malkova,et al.  Modified Tauc–Lorentz dispersion model leading to a more accurate representation of absorption features below the bandgap , 2015 .

[11]  Darrell G. Schlom,et al.  A Thin Film Approach to Engineering Functionality into Oxides , 2008 .

[12]  Günter,et al.  Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. , 1994, Physical review. B, Condensed matter.

[13]  F. Y. Gardes,et al.  Silicon optical modulators for integrated transceivers , 2013, CLEO: 2013.

[14]  R. Whatmore Pyroelectric ceramics and devices for thermal infra-red detection and imaging , 1991 .

[15]  O. Richard,et al.  Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001) , 2016 .

[16]  H. Morkoç,et al.  Anisotropy of thermal expansion of GaAs on Si(001) , 1988 .

[17]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[18]  C. Merckling,et al.  Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001) , 2006 .

[19]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  J. G. Skinner,et al.  Light Modulation and Beam Deflection with Potassium Tantalate-Niobate Crystals , 1966 .

[21]  Doron Rubin,et al.  High Speed Metal–Oxide–Semiconductor Capacitor-Based Silicon Optical Modulators , 2006 .

[22]  Florian Fallegger,et al.  Low-Loss BaTiO3–Si Waveguides for Nonlinear Integrated Photonics , 2016 .

[23]  C. Ahn,et al.  Crystalline Oxides on Silicon , 2010 .

[24]  Sasan Fathpour,et al.  Heterogeneous lithium niobate photonics on silicon substrates. , 2013, Optics express.

[25]  J. Greedan,et al.  Optical properties of highly reducedSrTiO3−x , 1999 .

[26]  Lukas Czornomaz,et al.  A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning , 2016, Journal of Lightwave Technology.