Cascaded Conditional Generative Adversarial Networks With Multi-Scale Attention Fusion for Automated Bi-Ventricle Segmentation in Cardiac MRI

Accurate segmentation of bi-ventricle from cardiac magnetic resonance images (MRI) is a critical step in cardiac function analysis and disease diagnosis. Due to the morphological diversification of the heart and the factors of MRI itself, fully automated and concurrent bi-ventricle segmentation is a well-known challenge. In this paper, we propose cascaded conditional generative adversarial networks (C-cGANs) to divide the problem into two segmentation subtasks: binary segmentation for region of interest (ROI) extraction and bi-ventricle segmentation. In both subtasks, we adopt adversarial training that makes discriminator network to discriminate segmentation maps either from generator network or ground-truth which aims to detect and correct pixel-wise inconsistency between the sources of segmentation maps. For capturing more spatial information with multi-scale semantic features, in the generator network, we insert a multi-scale attention fusion (MSAF) module between the encoder and decoder paths. The experiment on ACDC 2017 dataset shows that the proposed model outperforms other state-of-the-art methods in most metrics. Moreover, we validate the generalization capability of this model on MS-CMRSeg 2019 and RVSC 2012 datasets without fine-tuning, and the results demonstrate the effectiveness and robustness of the proposed method for bi-ventricle segmentation.

[1]  Zhiming Luo,et al.  GridNet with Automatic Shape Prior Registration for Automatic MRI Cardiac Segmentation , 2017, STACOM@MICCAI.

[2]  Hao Chen,et al.  3D Deeply Supervised Network for Automatic Liver Segmentation from CT Volumes , 2016, MICCAI.

[3]  Zhiming Luo,et al.  Convolutional Neural Network With Shape Prior Applied to Cardiac MRI Segmentation , 2019, IEEE Journal of Biomedical and Health Informatics.

[4]  Gustavo Carneiro,et al.  Left ventricle segmentation from cardiac MRI combining level set methods with deep belief networks , 2013, 2013 IEEE International Conference on Image Processing.

[5]  Georgios Tziritas,et al.  Fast Fully-Automatic Cardiac Segmentation in MRI Using MRF Model Optimization, Substructures Tracking and B-Spline Smoothing , 2017, STACOM@MICCAI.

[6]  Ganapathy Krishnamurthi,et al.  Densely Connected Fully Convolutional Network for Short-Axis Cardiac Cine MR Image Segmentation and Heart Diagnosis Using Random Forest , 2017, STACOM@MICCAI.

[7]  Milan Sonka,et al.  4-D Cardiac MR Image Analysis: Left and Right Ventricular Morphology and Function , 2010, IEEE Transactions on Medical Imaging.

[8]  Caroline Petitjean,et al.  A review of segmentation methods in short axis cardiac MR images , 2011, Medical Image Anal..

[9]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[10]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[11]  Qiang Chen,et al.  Network In Network , 2013, ICLR.

[12]  Christoph Meinel,et al.  Recurrent generative adversarial network for learning imbalanced medical image semantic segmentation , 2019, Multimedia Tools and Applications.

[13]  Zhiyong Yuan,et al.  RIANet: Recurrent interleaved attention network for cardiac MRI segmentation , 2019, Comput. Biol. Medicine.

[14]  Vijay K. Devabhaktuni,et al.  Fast, accurate, and fully automatic segmentation of the right ventricle in short-axis cardiac MRI , 2014, Comput. Medical Imaging Graph..

[15]  Camille Couprie,et al.  Semantic Segmentation using Adversarial Networks , 2016, NIPS 2016.

[16]  Mitko Veta,et al.  Adversarial Training and Dilated Convolutions for Brain MRI Segmentation , 2017, DLMIA/ML-CDS@MICCAI.

[17]  Jun Fu,et al.  Dual Attention Network for Scene Segmentation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[19]  Nicholas Ayache,et al.  3-D Consistent and Robust Segmentation of Cardiac Images by Deep Learning With Spatial Propagation , 2018, IEEE Transactions on Medical Imaging.

[20]  Max A. Viergever,et al.  Automatic Segmentation and Disease Classification Using Cardiac Cine MR Images , 2017, STACOM@MICCAI.

[21]  Hao Chen,et al.  Volumetric ConvNets with Mixed Residual Connections for Automated Prostate Segmentation from 3D MR Images , 2017, AAAI.

[22]  Christoph Meinel,et al.  Whole Heart and Great Vessel Segmentation with Context-aware of Generative Adversarial Networks , 2018, Bildverarbeitung für die Medizin.

[23]  Kuanquan Wang,et al.  Multi-Depth Fusion Network for Whole-Heart CT Image Segmentation , 2019, IEEE Access.

[24]  Lu Wang,et al.  Local Motion Intensity Clustering (LMIC) Model for Segmentation of Right Ventricle in Cardiac MRI Images , 2019, IEEE Journal of Biomedical and Health Informatics.

[25]  Kumaradevan Punithakumar,et al.  A GPU-Accelerated Deformable Image Registration Algorithm With Applications to Right Ventricular Segmentation , 2017, IEEE Access.

[26]  Hervé Delingette,et al.  Cardiac Motion Recovery and Boundary Conditions Estimation by Coupling an Electromechanical Model and Cine-MRI Data , 2009, FIMH.

[27]  Marc Pollefeys,et al.  An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation , 2017, STACOM@MICCAI.

[28]  Fredrik Kahl,et al.  An Efficient Optimization Framework for Multi-Region Segmentation Based on Lagrangian Duality , 2013, IEEE Transactions on Medical Imaging.

[29]  Daniel Rueckert,et al.  Right ventricle segmentation from cardiac MRI: A collation study , 2015, Medical Image Anal..

[30]  Amir A. Amini,et al.  A survey of shaped-based registration and segmentation techniques for cardiac images , 2013, Comput. Vis. Image Underst..

[31]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Jun Chen,et al.  Correlated Regression Feature Learning for Automated Right Ventricle Segmentation , 2018, IEEE Journal of Translational Engineering in Health and Medicine.

[34]  Yanping Zhang,et al.  Cardiac-DeepIED: Automatic Pixel-Level Deep Segmentation for Cardiac Bi-Ventricle Using Improved End-to-End Encoder-Decoder Network , 2019, IEEE Journal of Translational Engineering in Health and Medicine.

[35]  A. Katouzian,et al.  A New Automated Technique for Left- and Right-Ventricular Segmentation in Magnetic Resonance Imaging , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[36]  Hamid Jafarkhani,et al.  A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI , 2015, Medical Image Anal..

[37]  Maxime Sermesant,et al.  Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net , 2017, STACOM@MICCAI.

[38]  Nassir Navab,et al.  GANs for Medical Image Analysis , 2018, Artif. Intell. Medicine.

[39]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[40]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[41]  Daniel Rueckert,et al.  Segmentation of 4D Cardiac MR Images Using a Probabilistic Atlas and the EM Algorithm , 2003, MICCAI.

[42]  Klaus H. Maier-Hein,et al.  Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges , 2017, Lecture Notes in Computer Science.

[43]  F. Epstein MRI of left ventricular function , 2007, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[44]  Ganapathy Krishnamurthi,et al.  Fully convolutional multi‐scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers , 2018, Medical Image Anal..

[45]  Xiangyu Zhang,et al.  Large Kernel Matters — Improve Semantic Segmentation by Global Convolutional Network , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Marcel Breeuwer,et al.  Automatic Contour Propagation in Cine Cardiac Magnetic Resonance Images , 2006, IEEE Transactions on Medical Imaging.

[47]  Ben Glocker,et al.  Automated cardiovascular magnetic resonance image analysis with fully convolutional networks , 2017, Journal of Cardiovascular Magnetic Resonance.

[48]  Yeonggul Jang,et al.  Automatic Segmentation of LV and RV in Cardiac MRI , 2017, STACOM@MICCAI.

[49]  P. Matthews,et al.  UK Biobank’s cardiovascular magnetic resonance protocol , 2015, Journal of Cardiovascular Magnetic Resonance.

[50]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[51]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[52]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[53]  Denis Friboulet,et al.  Fast automatic myocardial segmentation in 4D cine CMR datasets , 2014, Medical Image Anal..

[54]  Huaifei Hu,et al.  Hybrid segmentation of left ventricle in cardiac MRI using Gaussian-mixture model and region restricted dynamic programming. , 2013, Magnetic resonance imaging.

[55]  M. Jorge Cardoso,et al.  Automatic Right Ventricle Segmentation using Multi-Label Fusion in Cardiac MRI , 2020, ArXiv.

[56]  Shubham Jain,et al.  2D-3D Fully Convolutional Neural Networks for Cardiac MR Segmentation , 2017, STACOM@MICCAI.

[57]  Xin Yang,et al.  Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? , 2018, IEEE Transactions on Medical Imaging.

[58]  Xiahai Zhuang,et al.  Multivariate Mixture Model for Myocardial Segmentation Combining Multi-Source Images , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[60]  Phi Vu Tran,et al.  A Fully Convolutional Neural Network for Cardiac Segmentation in Short-Axis MRI , 2016, ArXiv.

[61]  Pierre-André Vuissoz,et al.  Assessment of right ventricle volumes and function by cardiac MRI: Quantification of the regional and global interobserver variability , 2012, Magnetic resonance in medicine.

[62]  Milan Sonka,et al.  3-D active appearance models: segmentation of cardiac MR and ultrasound images , 2002, IEEE Transactions on Medical Imaging.

[63]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[64]  Francesca N. Delling,et al.  Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association , 2018, Circulation.

[65]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[66]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.