Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012

Petermann Gletscher, northwest Greenland, drains 4% of the Greenland ice sheet into Nares Strait. Its floating ice shelf retreated from 81 to 48 km in length during two large calving events in 2010 and 2012. We document changes in the three-dimensional ice-shelf structure from 2000 to 2012, using repeated tracks of airborne laser altimetry and ice radio-echo sounding, ICESat laser altimetry and MODIS visible imagery. The recent ice-shelf velocity, measured by tracking surface features between flights in 2010 and 2011, is �1.25 km a -1 , �15-30% faster than estimates made before 2010. The steady- state along-flow ice divergence represents 6.3 Gt a -1 mass loss through basal melting (�5 Gt a -1 ) and surface melting and sublimation (�1.0 Gt a -1 ). Airborne laser altimeter data reveal thinning, both along a thin central channel and on the thicker ambient ice shelf. From 2007 to 2010 the ice shelf thinned by �5 m a -1 , which represents a non-steady mass loss of �4.1 Gt a -1 . We suggest that thinning in the basal channels structurally weakened the ice shelf and may have played a role in the recent calving events.

[1]  I. Joughin,et al.  21st-Century Evolution of Greenland Outlet Glacier Velocities , 2011, Science.

[2]  Paul Wessel A general-purpose Green's function-based interpolator , 2009, Comput. Geosci..

[3]  H. Fricker,et al.  Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves , 2008 .

[4]  Donald K. Perovich,et al.  Arctic Ocean warming contributes to reduced polar ice cap , 2010 .

[5]  O. Johannessen,et al.  Unprecedented Retreat in a 50-Year Observational Record for Petermann Glacier, North Greenland , 2013 .

[6]  H. Melling,et al.  Context for the Recent Massive Petermann Glacier Calving Event , 2011, Eos, Transactions American Geophysical Union.

[7]  O. Sergienko,et al.  Basal channels on ice shelves , 2013 .

[8]  H. Fricker,et al.  Ice shelf grounding zone structure from ICESat laser altimetry , 2006 .

[9]  O. Olesen,et al.  Tidal movement of Nioghalvfjerdsfjorden glacier, northeast Greenland: observations and modelling , 2000, Annals of Glaciology.

[10]  M. Dubey,et al.  Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation , 2009 .

[11]  T. Painter,et al.  MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size , 2007 .

[12]  Duncan J. Wingham,et al.  Subglacial melt channels and fracture in the floating part of Pine Island Glacier, Antarctica , 2012 .

[13]  H. Melling,et al.  Ocean Warming of Nares Strait Bottom Waters off Northwest Greenland, 2003–2009 , 2011 .

[14]  Bob E. Schutz,et al.  ICESat Antarctic elevation data: Preliminary precision and accuracy assessment , 2006 .

[15]  S. Marshall,et al.  Paleofluvial Mega-Canyon Beneath the Central Greenland Ice Sheet , 2013, Science.

[16]  R. Bindschadler,et al.  Channelized Ice Melting in the Ocean Boundary Layer Beneath Pine Island Glacier, Antarctica , 2013, Science.

[17]  Robert N. Swift,et al.  Aircraft laser altimetry measurement of elevation changes of the greenland ice sheet: technique and accuracy assessment , 2002 .

[18]  David M. Holland,et al.  Sensitivity of 21st century sea level to ocean‐induced thinning of Pine Island Glacier, Antarctica , 2010 .

[19]  Ian M. Howat,et al.  Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat , 2009 .

[20]  Alun Hubbard,et al.  The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming , 2012 .

[21]  J. Kay,et al.  The Arctic’s rapidly shrinking sea ice cover: a research synthesis , 2012, Climatic Change.

[22]  M. R. van den Broeke,et al.  A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009 , 2013, Science.

[23]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[24]  Stephen F. Price,et al.  Ice-shelf basal channels in a coupled ice/ocean model , 2012, Journal of Glaciology.

[25]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 ( EGM 2008 ) , 2012 .

[26]  Robert Bindschadler,et al.  Variability of basal melt beneath the Pine Island Glacier ice shelf, West Antarctica , 2011, Journal of Glaciology.

[27]  J. Legarsky,et al.  Coherent radar ice thickness measurements over the Greenland ice sheet , 2001 .

[28]  P. Heimbach,et al.  North Atlantic warming and the retreat of Greenland's outlet glaciers , 2013, Nature.

[29]  M. Bevis,et al.  Spread of ice mass loss into northwest Greenland observed by GRACE and GPS , 2010 .

[30]  M. Zweng,et al.  Warming and freshening of Baffin Bay, 1916-2003 , 2006 .

[31]  K. Kjær,et al.  An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland , 2012 .

[32]  Beáta Csathó,et al.  A New Methodology for Detecting Ice Sheet Surface Elevation Changes From Laser Altimetry Data , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[33]  H. Melling,et al.  Ocean circulation and properties in Petermann Fjord, Greenland , 2011 .

[34]  A. P. Trishchenko,et al.  Arctic circumpolar mosaic at 250 m spatial resolution for IPY by fusion of MODIS/TERRA land bands B1–B7 , 2009 .

[35]  Eric Rignot,et al.  Channelized bottom melting and stability of floating ice shelves , 2008 .

[36]  E. Rignot,et al.  Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration , 2012, Annals of Glaciology.

[37]  W. Krabill,et al.  Recent changes on Greenland outlet glaciers , 2009, Journal of Glaciology.

[38]  T. Scambos,et al.  Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica , 2004 .

[39]  Kelly M. Brunt,et al.  Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat , 2009, Antarctic Science.

[40]  F. Pattyn,et al.  Future sea-level rise from Greenland’s main outlet glaciers in a warming climate , 2013, Nature.

[41]  A. K. Higgins North Greenland Glacier Velocities and Calf Ice Production , 1991 .

[42]  S. Erofeeva,et al.  A barotropic inverse tidal model for the Arctic Ocean , 2004 .

[43]  David M. Holland,et al.  Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters , 2008 .

[44]  H. Melling,et al.  Spatial continuity of measured seawater and tracer fluxes through Nares Strait, a dynamically wide channel bordering the Canadian Archipelago , 2007 .

[45]  Adrian A. Borsa,et al.  A range correction for ICESat and its potential impact on ice-sheet mass balance studies , 2013 .

[46]  Tavi Murray,et al.  Rapid and synchronous ice‐dynamic changes in East Greenland , 2006 .

[47]  R. Bindschadler,et al.  Ice Sheet Change Detection by Satellite Image Differencing , 2010 .

[48]  E. Rignot Hinge-line migration of Petermann Gletscher, north Greenland, detected using satellite-radar interferometry , 1998, Journal of Glaciology.

[49]  I. Joughin,et al.  Contribution to the glaciology of northern Greenland from satellite radar interferometry , 2001 .

[50]  I. Golovchanskaya,et al.  On the identification of plasma sheet flapping waves observed by Cluster , 2005 .

[51]  R. Coleman,et al.  Redefinition of the Amery Ice Shelf, East Antarctica, grounding zone , 2002 .

[52]  Wei Shi,et al.  Detection of Ice and Mixed Ice–Water Pixels for MODIS Ocean Color Data Processing , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Ian Joughin,et al.  Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier , 2004, Nature.

[54]  Ian M. Howat,et al.  Greenland flow variability from ice-sheet-wide velocity mapping , 2010, Journal of Glaciology.

[55]  Ian M. Howat,et al.  Mass balance of Greenland's three largest outlet glaciers, 2000–2010 , 2011 .

[56]  J. Abshire,et al.  Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On‐orbit measurement performance , 2005 .

[57]  Ian M. Howat,et al.  Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: ice dynamics and coupling to climate , 2008 .

[58]  J. Bassis,et al.  ICESat's new perspective on ice shelf rifts: The vertical dimension , 2005 .

[59]  Byron D. Tapley,et al.  Interannual variability of Greenland ice losses from satellite gravimetry , 2011 .

[60]  Yi Luo,et al.  Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America , 2008 .