Theory of Combinatorial Games
暂无分享,去创建一个
[1] Aviezri S. Fraenkel,et al. The generalized Sprague-Grundy function and its invariance under certain mappings , 1986, J. Comb. Theory, Ser. A.
[2] C. L. Bouton. Nim, A Game with a Complete Mathematical Theory , 1901 .
[3] Aviezri S. Fraenkel,et al. Planar kernel and grundy with d≤3, dout≤2, din≤2 are NP-complete , 1981, Discret. Appl. Math..
[4] Aviezri S. Fraenkel,et al. Complexity, appeal and challenges of combinatorial games , 2004, Theor. Comput. Sci..
[5] Aaron N. Siegel. Combinatorial Game Theory , 2013 .
[6] Cedric A. B. Smith. Graphs and composite games , 1966 .
[7] Aviezri S. Fraenkel,et al. Strategy for a class of games with dynamic ties , 1975 .
[8] A. Fraenkel,et al. Theory of annihilation games—I☆ , 1982 .
[9] Robert M. Hierons,et al. Reaching and Distinguishing States of Distributed Systems , 2010, SIAM J. Comput..
[10] A. Blokhuis. Winning ways for your mathematical plays , 1984 .
[11] John Michael Robson,et al. Combinatorial Games with Exponential Space Complete Decision Problems , 1984, MFCS.
[12] John Michael Robson,et al. N by N Checkers is Exptime Complete , 1984, SIAM J. Comput..
[13] Erik D. Demaine,et al. PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation , 2002, Theor. Comput. Sci..
[14] Aviezri S. Fraenkel,et al. Theory of annihilation games , 1976 .
[15] Michael Hoffmann,et al. Push-2-f is pspace-complete , 2002, CCCG.
[16] Erik D. Demaine,et al. Constraint Logic: A Uniform Framework for Modeling Computation as Games , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.
[17] Noam D. Elkies. New Directions in Enumerative Chess Problems , 2005, Electron. J. Comb..
[18] F. L. Morris. Playing disjunctive sums is polynomial space complete , 1981 .
[19] Aviezri S. Fraenkel,et al. Computing a Perfect Strategy for n*n Chess Requires Time Exponential in N , 1981, ICALP.
[20] Julian West. Championship-Level Play of Domineering , 1996 .
[21] R. Sprague. Über mathematische Kampfspiele , 1935 .
[22] Jaroslav Nesetril,et al. Epidemiography II. Games with a dozing yet winning player , 1988, J. Comb. Theory, Ser. A.
[23] Aviezri S. Fraenkel,et al. PSPACE-hardness of some combinatorial games , 1987, J. Comb. Theory, Ser. A.
[24] Aviezri S. Fraenkel,et al. Three Annihilation Games , 1978 .
[25] Thomas S. Ferguson,et al. Misère Annihilation Games , 1984, J. Comb. Theory, Ser. A.
[26] L. Yedwab. ON PLAYING WELL IN A SUM OF GAMES , 1985 .
[27] Aviezri S. Fraenkel,et al. Computing a Perfect Strategy for n x n Chess Requires Time Exponential in n , 1981, J. Comb. Theory, Ser. A.
[28] F. L. Morris,et al. Prohibiting repetitions makes playing games substantially harder , 1984 .
[29] Aaron N. Siegel,et al. Misère quotients for impartial games , 2006, J. Comb. Theory, Ser. A.
[30] John H. Reif,et al. Multiple-person alternation , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[31] Aviezri S. Fraenkel,et al. Complexity of problems in games, graphs and algebraic equations , 1979, Discret. Appl. Math..
[32] Thomas J. Schaefer,et al. On the Complexity of Some Two-Person Perfect-Information Games , 1978, J. Comput. Syst. Sci..
[33] John Michael Robson,et al. The Complexity of Go , 1983, IFIP Congress.
[34] Robert A. Hearn. Tipover is NP-complete , 2006 .
[35] Robert A. Hearn. Amazons, Konane, and Cross Purposes are PSPACE-complete , 2009 .
[36] Michael O. Rabin,et al. 6. EFFECTIVE COMPUTABILITY OF WINNING STRATEGIES , 1958 .
[37] Aviezri S. Fraenkel,et al. Combinatorial games with an annihilation rule , 1974 .
[38] Thane E. Plambeck,et al. Taming the wild in impartial combinatorial games , 2005 .
[39] Erik D. Demaine,et al. Games, puzzles and computation , 2009 .
[40] Stefan Reisch,et al. Hex ist PSPACE-vollständig , 1981, Acta Informatica.
[41] Larry J. Stockmeyer,et al. Provably Difficult Combinatorial Games , 1979, SIAM J. Comput..
[42] J. Conway. On Numbers and Games , 1976 .
[43] Edward M. Reingold,et al. The Complexity of Pursuit on a Graph , 1995, Theor. Comput. Sci..
[44] Richard J. Nowakowski,et al. Lessons in Play: An Introduction to Combinatorial Game Theory , 2007 .
[45] Noam D. Elkies. On Numbers and Endgames: combinatorial Game Theory in Chess Endgames , 1996 .