On the estimation of jet-induced fountain lift and additional suckdown in hover for two-jet configurations

Currently available methods for estimating the net suckdown induced on jet V/STOL aircraft hovering in ground effect are based on a correlation of available force data and are, therefore, limited to configurations similar to those in the data base. Experience with some of these configurations has shown that both the fountain lift and additional suckdown are overestimated but these effects cancel each other for configurations within the data base. For other configurations, these effects may not cancel and the net suckdown could be grossly overestimated or underestimated. Also, present methods do not include the prediction of the pitching moments associated with the suckdown induced in ground effect. An attempt to develop a more logically based method for estimating the fountain lift and suckdown based on the jet-induced pressures is initiated. The analysis is based primarily on the data from a related family of three two-jet configurations (all using the same jet spacing) and limited data from two other two-jet configurations. The current status of the method, which includes expressions for estimating the maximum pressure induced in the fountain regions, and the sizes of the fountain and suckdown regions is presented. Correlating factors are developed to be used with these areas and pressures to estimate the fountain lift, the suckdown, and the related pitching moment increments.