On moments based Padé approximations of ruin probabilities

In this paper, we investigate the quality of the moments based Pade approximation of ultimate ruin probabilities by exponential mixtures. We present several numerical examples illustrating the quick convergence of the method in the case of Gamma processes. While this is not surprising in the completely monotone case (which holds when the shape parameter is less than 1), it is more so in the opposite case, for which we improve even further the performance by a fix-up which may be of special importance due to its potential use in the four moments Gamma approximation. We also review the connection of the exponential mixtures approximation to Pade approximation, orthogonal polynomials, and Gaussian quadrature. These connections may turn out useful for providing rates of convergence.

[1]  Colin M. Ramsay,et al.  A PRACTICAL ALGORITHM FOR APPROXIMATING THE PROBABILITY OF RUIN , 1992 .

[2]  Florin Avram,et al.  On the efficient evaluation of ruin probabilities for completely monotone claim distributions , 2010, J. Comput. Appl. Math..

[3]  Jan Grandell,et al.  Simple approximations of ruin probabilities , 2000 .

[4]  Fl. De Vylder,et al.  A practical solution to the problem of ultimate ruin probability , 1978 .

[5]  Gene H. Golub,et al.  Nonsymmetric Lanczos and finding orthogonal polynomials associated with indefinite weights , 1991, Numerical Algorithms.

[6]  W. Gragg,et al.  On the partial realization problem , 1983 .

[7]  Jan Grandell,et al.  A comparison of some approximations of ruin probabilities , 1971 .

[8]  Leonard Weiss,et al.  Prony’s Method, Z-Transforms, and Padé Approximation , 1963 .

[9]  Olof Thorin,et al.  The ruin problem in case the tail of the claim distribution is completely monotone , 1973 .

[10]  É. Christoffel,et al.  Sur une classe particulière de fonctions entières et de fractions continues , 2022 .

[11]  Ramin Sadre,et al.  Fitting World Wide Web request traces with the EM-algorithim , 2001, SPIE ITCom.

[12]  William G. Marchal,et al.  Distribution Estimation Using Laplace Transforms , 1998, INFORMS J. Comput..

[13]  Gregory S. Ammar,et al.  Exponential interpolation: theory and numerical algorithms , 1991 .

[14]  Almerico Murli,et al.  Software for an implementation of Weeks' method for the inverse Laplace transform , 1988, TOMS.

[15]  L. Trefethen,et al.  Talbot quadratures and rational approximations , 2006 .

[16]  Olof Thorin,et al.  Calculation of Ruin Probabilities when the Claim Distribution is Lognormal , 1977, ASTIN Bulletin.

[17]  Hans U. Gerber,et al.  Rational ruin problems--a note for the teacher , 1991 .

[18]  J. A. C. Weideman,et al.  Algorithms for Parameter Selection in the Weeks Method for Inverting the Laplace Transform , 1999, SIAM J. Sci. Comput..

[19]  C. Jacobi,et al.  Ueber Gauß neue Methode, die Werthe der Integrale näherungsweise zu finden. , 1826 .

[20]  Ren Asmussen,et al.  Fitting Phase-type Distributions via the EM Algorithm , 1996 .

[21]  C. Brezinski An introduction to formal orthogonality an some of its applications (#) (PDF, 281kb) , 2002 .

[22]  Carl Friedrich Gauss METHODUS NOVA INTEGRALIUM VALORES PER APPROXIMATIONEM INVENIENDI , 2011 .

[23]  Daniel Dufresne,et al.  Fitting combinations of exponentials to probability distributions , 2007 .

[24]  Anja Feldmann,et al.  Fitting Mixtures of Exponentials to Long-Tail Distributions to Analyze Network , 1998, Perform. Evaluation.

[25]  Mogens Bladt,et al.  Renewal Theory and Queueing Algorithms for Matrix-Exponential Distributions , 1996 .

[26]  Miklós Telek,et al.  Moments Characterization of Order 3 Matrix Exponential Distributions , 2009, ASMTA.

[27]  W. Gragg Matrix interpretations and applications of the continued fraction algorithm , 1974 .

[28]  Krzysztof Burnecki,et al.  A NEW GAMMA TYPE APPROXIMATION OF THE RUIN PROBABILITY , 2005 .

[29]  Ushio Sumita,et al.  Classes of probability density functions having Laplace transforms with negative zeros and poles , 1987, Advances in Applied Probability.

[30]  E. K. Ifantis,et al.  Convergence of Associated Continued Fractions Revised , 2001 .

[31]  Miklós Telek,et al.  Moment characterization of matrix exponential and Markovian arrival processes , 2008, Ann. Oper. Res..

[32]  Lucille McDaniel Hodges Quadrature, Interpolation and Observability , 2013 .