On moments based Padé approximations of ruin probabilities
暂无分享,去创建一个
[1] Colin M. Ramsay,et al. A PRACTICAL ALGORITHM FOR APPROXIMATING THE PROBABILITY OF RUIN , 1992 .
[2] Florin Avram,et al. On the efficient evaluation of ruin probabilities for completely monotone claim distributions , 2010, J. Comput. Appl. Math..
[3] Jan Grandell,et al. Simple approximations of ruin probabilities , 2000 .
[4] Fl. De Vylder,et al. A practical solution to the problem of ultimate ruin probability , 1978 .
[5] Gene H. Golub,et al. Nonsymmetric Lanczos and finding orthogonal polynomials associated with indefinite weights , 1991, Numerical Algorithms.
[6] W. Gragg,et al. On the partial realization problem , 1983 .
[7] Jan Grandell,et al. A comparison of some approximations of ruin probabilities , 1971 .
[8] Leonard Weiss,et al. Prony’s Method, Z-Transforms, and Padé Approximation , 1963 .
[9] Olof Thorin,et al. The ruin problem in case the tail of the claim distribution is completely monotone , 1973 .
[10] É. Christoffel,et al. Sur une classe particulière de fonctions entières et de fractions continues , 2022 .
[11] Ramin Sadre,et al. Fitting World Wide Web request traces with the EM-algorithim , 2001, SPIE ITCom.
[12] William G. Marchal,et al. Distribution Estimation Using Laplace Transforms , 1998, INFORMS J. Comput..
[13] Gregory S. Ammar,et al. Exponential interpolation: theory and numerical algorithms , 1991 .
[14] Almerico Murli,et al. Software for an implementation of Weeks' method for the inverse Laplace transform , 1988, TOMS.
[15] L. Trefethen,et al. Talbot quadratures and rational approximations , 2006 .
[16] Olof Thorin,et al. Calculation of Ruin Probabilities when the Claim Distribution is Lognormal , 1977, ASTIN Bulletin.
[17] Hans U. Gerber,et al. Rational ruin problems--a note for the teacher , 1991 .
[18] J. A. C. Weideman,et al. Algorithms for Parameter Selection in the Weeks Method for Inverting the Laplace Transform , 1999, SIAM J. Sci. Comput..
[19] C. Jacobi,et al. Ueber Gauß neue Methode, die Werthe der Integrale näherungsweise zu finden. , 1826 .
[20] Ren Asmussen,et al. Fitting Phase-type Distributions via the EM Algorithm , 1996 .
[21] C. Brezinski. An introduction to formal orthogonality an some of its applications (#) (PDF, 281kb) , 2002 .
[22] Carl Friedrich Gauss. METHODUS NOVA INTEGRALIUM VALORES PER APPROXIMATIONEM INVENIENDI , 2011 .
[23] Daniel Dufresne,et al. Fitting combinations of exponentials to probability distributions , 2007 .
[24] Anja Feldmann,et al. Fitting Mixtures of Exponentials to Long-Tail Distributions to Analyze Network , 1998, Perform. Evaluation.
[25] Mogens Bladt,et al. Renewal Theory and Queueing Algorithms for Matrix-Exponential Distributions , 1996 .
[26] Miklós Telek,et al. Moments Characterization of Order 3 Matrix Exponential Distributions , 2009, ASMTA.
[27] W. Gragg. Matrix interpretations and applications of the continued fraction algorithm , 1974 .
[28] Krzysztof Burnecki,et al. A NEW GAMMA TYPE APPROXIMATION OF THE RUIN PROBABILITY , 2005 .
[29] Ushio Sumita,et al. Classes of probability density functions having Laplace transforms with negative zeros and poles , 1987, Advances in Applied Probability.
[30] E. K. Ifantis,et al. Convergence of Associated Continued Fractions Revised , 2001 .
[31] Miklós Telek,et al. Moment characterization of matrix exponential and Markovian arrival processes , 2008, Ann. Oper. Res..
[32] Lucille McDaniel Hodges. Quadrature, Interpolation and Observability , 2013 .