Thermomechanical Characterization of Shape Memory Alloy Materials

Having introduced the fundamentals of shape memory alloy behavior, the characterization of SMA materials is discussed here. Such a discussion fosters a better understanding of the thermomechanical constitutive response of SMAs. Furthermore, proper determination of required material properties is necessary for the development of comprehensive and accurate SMA material models. Finally, it is perhaps the most important step in the practical implementation of SMAs. Whatever methodology one uses to design a given SMA application, a quantitative evaluation of key material properties is required.

[1]  J. Perkins,et al.  Shape Memory Effects in Alloys , 1975 .

[2]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[3]  Dimitris C. Lagoudas,et al.  Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains , 2000 .

[4]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect , 1999 .

[5]  Ken Gall,et al.  Compressive response of NiTi single crystals , 2000, Acta Materialia.

[6]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[7]  H. Maier,et al.  Deformation of NiTiCu shape memory single crystals in compression , 2001 .

[8]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[9]  G. Carman,et al.  Thermo-mechanical characterization of shape memory alloy torque tube actuators , 2000 .

[10]  Dimitris C. Lagoudas,et al.  Dynamic loading of polycrystalline shape memory alloy rods , 2003 .

[11]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[12]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II : material characterization and experimental results for a stable transformation cycle , 1999 .

[13]  C. Lexcellent,et al.  Modeling of the strain rate effect, creep and relaxation of a Ni-Ti shape memory alloy under tension (compression) - torsional proportional loading in the pseudoelastic range , 2000 .

[14]  Dimitris C. Lagoudas,et al.  Shape memory alloys, Part II: Modeling of polycrystals , 2006 .

[15]  Otsuka,et al.  Universal symmetry property of point defects in crystals , 2000, Physical review letters.

[16]  W. J. Buehler,et al.  THE PROPERTIES OF TINI AND ASSOCIATED PHASES , 1961 .

[17]  R. Clifton,et al.  On pressure-shear plate impact for studying the kinetics of stress-induced phase transformations , 1992 .

[18]  T. W. Duerig,et al.  Engineering Aspects of Shape Memory Alloys , 1990 .

[19]  Sia Nemat-Nasser,et al.  Very high strain-rate response of a NiTi shape-memory alloy , 2005 .

[20]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[21]  P. Feng,et al.  Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force , 2006 .

[22]  D. McDowell,et al.  Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and , 1999 .

[23]  John A. Shaw,et al.  Thermodynamics of Shape Memory Alloy Wire: Modeling, Experiments, and Application , 2006 .

[24]  Shuichi Miyazaki,et al.  Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy , 1981 .

[25]  L. Brinson,et al.  Shape memory alloys, Part I: General properties and modeling of single crystals , 2006 .

[26]  K. T. Ramesh,et al.  Rate dependence of deformation mechanisms in a shape memory alloy , 2002 .