Complementarity in Categorical Quantum Mechanics

We relate notions of complementarity in three layers of quantum mechanics: (i) von Neumann algebras, (ii) Hilbert spaces, and (iii) orthomodular lattices. Taking a more general categorical perspective of which the above are instances, we consider dagger monoidal kernel categories for (ii), so that (i) become (sub)endohomsets and (iii) become subobject lattices. By developing a ‘point-free’ definition of copyability we link (i) commutative von Neumann subalgebras, (ii) classical structures, and (iii) Boolean subalgebras.

[1]  Samson Abramsky,et al.  H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics , 2010, 1011.6123.

[2]  On Estimating the State of a Finite Level Quantum System , 2004, quant-ph/0408069.

[3]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[4]  Joachim Kock,et al.  Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .

[5]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[6]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[7]  Carsten Held The meaning of complementarity , 1994 .

[8]  Bart Jacobs,et al.  Quantum Logic in Dagger Kernel Categories , 2009, QPL@MFPS.

[9]  Samson Abramsky,et al.  Categorical quantum mechanics , 2008, 0808.1023.

[10]  Andreas Doering,et al.  “What is a Thing?”: Topos Theory in the Foundations of Physics , 2008, 0803.0417.

[11]  B. Coecke,et al.  Classical and quantum structuralism , 2009, 0904.1997.

[12]  Dov M. Gabbay,et al.  Handbook of Quantum Logic and Quantum Structures: Quantum Logic , 2009 .

[13]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[14]  C. J. Isham,et al.  A Topos Perspective on the Kochen-Specker Theorem II. Conceptual Aspects and Classical Analogues , 1998 .

[15]  C. J. Isham,et al.  Topos Perspective on the Kochen-Specker Theorem: I. Quantum States as Generalized Valuations , 1998, quant-ph/9803055.

[16]  F. Strocchi,et al.  Elements of Quantum Mechanics of Infinite Systems , 1985 .

[17]  Denes Petz,et al.  Complementarity in quantum systems , 2007 .

[18]  Dusko Pavlovic,et al.  Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.

[19]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[20]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[21]  Dusko Pavlovic,et al.  A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.

[22]  C. Piron,et al.  On the Foundations of Quantum Physics , 1976 .

[23]  Chris Heunen,et al.  Noncommutativity as a Colimit , 2010, Appl. Categorical Struct..

[24]  Adam Grabowski,et al.  Orthomodular Lattices , 2008, Formaliz. Math..

[25]  Karl Svozil,et al.  Quantum Logic in Algebraic Approach , 2001 .

[26]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[27]  N. P. Landsman Between classical and quantum , 2005 .